Genomics-Based Opportunities in Apricot

  • Kevin M. Folta
  • Susan E. Gardiner
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Apricot (Prunus armeniaca L.) is in many ways similar to peach. The two crops share common physical traits, such as highly familiar fruit forms, that point to their common center of origin and remarkably collinear genomes. At first glance, it may seem somewhat redundant to include a chapter on apricot adjacent to a substantial discussion of peach. However, while similar to peach, apricot features many important distinctions. Apricot has a discrete cultural history, its dissemination throughout Asia and Europe is unique, and the challenges faced by apricot breeders and growers discriminate it from other stonefruits. Unlike peach most apricot cultivars are not self compatible. Apricot varieties are much more diverse and they are more abundant in arid regions such as the Middle East. These facets justify an independent treatment of apricot in any discussion of rosaceous crop genomics.


Simple Sequence Repeat Marker Simple Sequence Repeat Primer Amplify Fragment Length Polymorphism Prunus Species Simple Sequence Repeat Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad R, Potter D, Southwick SM (2004) Identification and characterization of plum and pluot cultivars by microsatellite markers. Journal of Horticultural Science & Biotechnology 79: 164–169Google Scholar
  2. Alburquerque N, Egea J, Perez-Tornero O, Burgos L (2002) Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breeding 121:343–347CrossRefGoogle Scholar
  3. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics 106:819–825PubMedGoogle Scholar
  4. Arumaganathan K, Earle ED (1991) Nulcear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208–218CrossRefGoogle Scholar
  5. Asma BM, Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genetic Resources and Crop Evolution 52:305–313CrossRefGoogle Scholar
  6. Badenes ML, Asins MJ, Carbonell EA, Glacer G (1996) Genetic diversity in apricot, Prunus armeniaca, aimed at improving resistance to plum pox virus. Plant Breeding 115:133–139CrossRefGoogle Scholar
  7. Badenes ML, Martinez-Calvo J, Llacer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93–99CrossRefGoogle Scholar
  8. Bailey CH, Hough LF (1975) Apricots. In: Janick J, Moore JN (eds) Advances in Fruit Breeding. Purdue University Press, Lafayette, INGoogle Scholar
  9. Bailey LH (1916) Prunus. Mount Pleasant Press, J. Horace McFarland Co., Harrisburg, PAGoogle Scholar
  10. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399CrossRefPubMedGoogle Scholar
  11. Boriss H, Brunke H, Kreith M (2006) Commodity Profile: Apricots. In: Center AI (ed), University of California, Berkeley, CA, p 6Google Scholar
  12. Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Reports 21:1167–1174CrossRefPubMedGoogle Scholar
  13. Burgos L, Egea J, Guerriero R, Viti R, Monteleone P, Audergon JM (1997) The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. Journal of Horticultural Science 72:147–154Google Scholar
  14. Burgos L, Perez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11:153–158CrossRefGoogle Scholar
  15. Byrne DH (1989) Inheritance of 5 isozyme loci in apricot. Hortscience 24:1015–1016Google Scholar
  16. Byrne DH, Littleton TG (1989) Characterization of isozyme variability in apricots. Journal of the American Society for Horticultural Science 114:674–678Google Scholar
  17. Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris MT, Revers F, Macquaire G, Olmos A, Boscia D, Quiot JB, Dunez J (1998) Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology 88:198–204CrossRefPubMedGoogle Scholar
  18. Capote N, Monzo C, Urbaneja A, Perez-Panades J, Carbonell E, Ravelonandro M, Scorza R, Cambra M (2007) Risk assessment of the field release of transgenic European plums susceptible and resistant to plum pox virus. Itea-Informacion Tecnica Economica Agraria 103: 156–167Google Scholar
  19. Chuda Y, Ono H, Ohnishi-Kameyama M, Matsumoto K, Nagata T, Kikuchi Y (1999) Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). Journal of Agricultural and Food Chemistry 47: 828–831CrossRefPubMedGoogle Scholar
  20. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theoretical and Applied Genetics 99:65–72CrossRefGoogle Scholar
  21. de Vicente MC, Truco MJ, Egea J, Burgos L, Arus P (1998) RFLP variability in apricot (Prunus armeniaca L.). Plant Breeding 117:153–158CrossRefGoogle Scholar
  22. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics 106:912–922PubMedGoogle Scholar
  23. Dicenta F, Audergon JM (1998) Inheritance of resistance to plum pox potyvirus (PPV) in ‘Stella’ apricot seedlings. Plant Breeding 117:579–581CrossRefGoogle Scholar
  24. Dicenta F, Martinez-Gomez P, Burgos L, Egea J (2000) Inheritance of resistance to plum pox potyvirus (PPV) in apricot, Prunus armeniaca. Plant Breeding 119:161–164CrossRefGoogle Scholar
  25. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America 101:9891–9896CrossRefPubMedGoogle Scholar
  26. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics & Genomes 3:239–249CrossRefGoogle Scholar
  27. Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S–) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes to Cells 8:203–213CrossRefPubMedGoogle Scholar
  28. Faust M, Suranyi D, Nyujto F (1998) Origin and dissemination of apricot. In: Janick J (ed) Horticultural Reviews. Wiley-Interscience, p 336Google Scholar
  29. Fuchs E, Gruntzig M, Ernst I (2001) Comparison of apricot genotypes with different resistance level to plum pox virus (PPV). Acta Hortic 550:103–106Google Scholar
  30. Gao ZH, Shen ZJ, Han ZH, Fang JG, Zhang YM, Zhang Z (2004) Microsatellite markers and genetic diversity in Japanese apricot (Prunus mume). Hortscience 39:1571–1574Google Scholar
  31. Goffreda JC, Scopel AL, Fiola JA (1995) Indole butyric-acid induces regeneration of phenotypically normal apricot (Prunus-armeniaca L) plants from immature embryos. Plant Growth Regulation 17:41–46Google Scholar
  32. Guillet Bellanger I, Audergon J (2001) Inheritance of the stark early orange apricot cultivar resistance to plum pox virus. Acta Hortic 550:111–116Google Scholar
  33. Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Molecular Ecology Notes 4:742–745CrossRefGoogle Scholar
  34. Hagen LS, Khadari B, Lambert P, Audergon JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theoretical and Applied Genetics 105: 298–305CrossRefPubMedGoogle Scholar
  35. Halasz J, Hegedus A, Herman R, Stefanovits-Banyai E, Pedryc A (2005) New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145:57–66CrossRefGoogle Scholar
  36. He TM, Chen XS, Xu Z, Gao JS, Lin PJ, Liu W, Liang Q, Wu Y (2007) Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution 54:563–572CrossRefGoogle Scholar
  37. Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Research 13:427–436CrossRefPubMedGoogle Scholar
  38. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llacer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theoretical and Applied Genetics 105:182–191CrossRefPubMedGoogle Scholar
  39. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F-2 progeny. Theoretical and Applied Genetics 97:1034–1041CrossRefGoogle Scholar
  40. Karayiannis I, Thomidis T, Tsaftaris A (2008) Inheritance of resistance to plum pox virus in apricot (Prunus armeniaca L.). Tree Genetics & Genomes 4:143–148CrossRefGoogle Scholar
  41. Kita M, Kato M, Ban Y, Honda C, Yaegaki H, Ikoma Y, Moriguchi T (2007) Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation. Journal of Agricultural Food Chemistry 55: 3414–3420CrossRefGoogle Scholar
  42. Kostina KF (1936) (Russian) The Apricot. The Bulletin of Applied Botany, Genetics and Breeding, Supplement 83. Lenin Academy of Agricultural Sciences, Institute of Plant Industry, Leningrad, RussiaGoogle Scholar
  43. Kostina KF (1969) The use of varietal resources of apricots for breeding. Trud Nikit Bot Sad 40:45–63Google Scholar
  44. Krichen L, Martins JMS, Lambert P, Daaloul A, Trifi-Farah N, Marrakchi M, Audergon JM (2008) Using AFLP markers for the analysis of the genetic diversity of apricot cultivars in Tunisia. Journal of the American Society for Horticultural Science 133:204–212Google Scholar
  45. Krichen L, Mnejja M, Arus P, Marrakchi M, Trifi-Farah N (2006) Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genetic Resources and Crop Evolution 53:1699–1706CrossRefGoogle Scholar
  46. Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genetics & Genomes 4:481–493CrossRefGoogle Scholar
  47. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theoretical and Applied Genetics 111: 1504–1513CrossRefPubMedGoogle Scholar
  48. Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Genetics & Genomes 3:299–309CrossRefGoogle Scholar
  49. Layne REC, Bailey LH, Hough LF (1996) Apricots. In: Janick J, Moore JN (eds) Fruit Breeding. J. Wiley and Sons, New York, pp 79–111Google Scholar
  50. Ledbetter CA (2008) Apricots. In: J.F. H (ed) Temperate Fruit Crop Breeding. Springer, New York, pp 39–82CrossRefGoogle Scholar
  51. Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Molecular Ecology Notes 2:24–26CrossRefGoogle Scholar
  52. Maghuly F, Fernandez EB, Zelger R, Marschall K, Katinger H, Laimer M (2006) Genetic differentiation of apricot (Prunus armeniaca L.) cultivars with markers. European Journal of Horticultural Science 71:129–134Google Scholar
  53. Mariniello L, Sommella MG, Sorrentino A, Forlani M, Porta R (2002) Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnology Letters 24:749–755CrossRefGoogle Scholar
  54. Mbeguie-A-Mbeguie D, Chahine H, Gomez RM, Gouble B, Reich M, Audergon JM, Souty M, Albagnac G, Fils-Lycaon B (1999) Molecular cloning and expression of a cDNA encoding 1-aminocyclopropane-1-carboxylate (ACC) oxidase from apricot fruit (Prunus armeniaca). Physiologia Plantarum 105:294–303CrossRefGoogle Scholar
  55. Mbeguie-A-Mbeguie D, Gouble B, Gomez RM, Audergon JM, Albagnac G, Fils-Lycaon B (2002) Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene. Plant Physiology and Biochemistry 40:445–452CrossRefGoogle Scholar
  56. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Molecular Ecology Notes 4:432–434CrossRefGoogle Scholar
  57. Mita S, Kirita C, Kato M, Hyodo H (1999) Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume). Physiologia Plantarum 107:319–328CrossRefGoogle Scholar
  58. Mita S, Nagai Y, Asai T (2006) Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals. Physiologia Plantarum 128:531–545CrossRefGoogle Scholar
  59. Negri P, Bassi D, Magnanini E, Rizzo M, Bartolozzi F (2008) Bitterness inheritance in apricot (P. armeniaca L.) seeds. Tree Genetics & Genomes in pressGoogle Scholar
  60. Pashkoulov D, Givondov A, Yliev P (1995) Isozyme variability in plum (prunus-domestica), and its use for cultivar and interspecific hybrid identification. Biotechnology & Biotechnological Equipment 9:33–35Google Scholar
  61. Perez-Tornero O, Burgos L (2000) Different media requirements for micropropagation of apricot cultivars. Plant Cell Tissue and Organ Culture 63:133–141CrossRefGoogle Scholar
  62. Perez-Tornero O, Egea J, Olmos E, Burgos L (2001) Control of hyperhydricity in micropropagated apricot cultivars. In Vitro Cellular and Developmental Biology Plant 37:250–254CrossRefGoogle Scholar
  63. Perez-Tornero O, Egea J, Vanoostende A, Burgos L (2000) Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Sci 158:61–70CrossRefPubMedGoogle Scholar
  64. Perezgonzales S (1992) Associations among morphological and phenological characters representing apricot Germplasm in central Mexico. Journal of the American Society for Horticultural Science 117:486–490Google Scholar
  65. Petri C, Alburquerque N, Burgos L (2005a) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tissue Organ Cult 80:271–276Google Scholar
  66. Petri C, Alburquerque N, Garcia-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early Agrobacterium-mediated transformation steps. Journal of Horticultural Science & Biotechnology 79:704–712Google Scholar
  67. Petri C, Alburquerque N, Perez-Tornero O, Burgos L (2005b) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue and Organ Culture 82:105–111Google Scholar
  68. Pieterse RE (1989) Regeneration of plants from callus and embryos of royal apricot. Plant Cell Tissue and Organ Culture 19:175–179CrossRefGoogle Scholar
  69. Polak J (1998) Relative concentration of plum pox virus in leaves and flowers of some Prunus species and cultivars. Acta Virologica 42:264–267PubMedGoogle Scholar
  70. Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Disease 81:1231–1235CrossRefGoogle Scholar
  71. Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions. Macmillan, New YorkGoogle Scholar
  72. Romero C, Pedryc A, Munoz V, Llacer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252CrossRefPubMedGoogle Scholar
  73. Rubio A, Ruiz D, Egea J, Martinez-Gomez P, Dicenta F (2008) Evaluation of apricot resistance to plum pox virus (sharka) in controlled greenhouse and natural field conditions. Scientia Horticulturae 116:176–179CrossRefGoogle Scholar
  74. Rubio M, Audergon JM, Martinez-Gomez P, Dicenta F (2007) Testing genetic control hypotheses for Plum pox virus (sharka) resistance in apricot. Scientia Horticulturae 112:361–365CrossRefGoogle Scholar
  75. Rubio M, Dicenta F, Martinez-Gomez P (2003) Susceptibility to sharka (Plum pox virus) in Prunus mandshurica x P-armeniaca seedlings. Plant Breeding 122:465–466CrossRefGoogle Scholar
  76. Salava J, Polak J, Krska B (2005) Oligogenic inheritance to plum pox virus in apricots. Czech Journal of Genetics Plant Breed 41:167–170Google Scholar
  77. Sanchez-Perez R, Martinez-Gomez P, Dicenta F, Egea J, Ruiz D (2006) Level and transmission of genetic heterozygosity in apricot (Prunus armeniaca L.) explored using simple sequence repeat markers. Genetic Resources and Crop Evolution 53:763–770CrossRefGoogle Scholar
  78. Sanchez-Perez R, Ruiz D, Dicenta F, Egea J, Martinez-Gomez P (2005) Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae 103:305–315CrossRefGoogle Scholar
  79. Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus-domestica L) express the plum pox virus coat protein gene. Plant Cell Reports 14:18–22CrossRefGoogle Scholar
  80. Shimada T, Haji T, Yamaguchi M, Takeda T, Nomura K, Yoshida M (1994) Classification of mume (Prunus mume Sieb et Zucc) by RAPD assay. Journal of Japanese Society Horticultural Science 63:543–551CrossRefGoogle Scholar
  81. Soriano JM, Vera-Ruiz EM, Vilanova S, Martinez-Calvo J, Llacer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genetics & Genomes 4:391–402CrossRefGoogle Scholar
  82. Soriano JM, Vilanova S, Romero C, Llacer G, Badenes M (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theoretical and Applied Genetics 110:980–989CrossRefPubMedGoogle Scholar
  83. Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. Journal of Japanese Society Horticultural Science 67:21–27CrossRefGoogle Scholar
  84. Tao R, Habu T, Yamane H, Sugiura A (2002) Characterization and cDNA cloning for S-f-RNase, a molecular marker for self-compatibility, in Japanese apricot (Prunus mume). Journal of Japanese Society Horticultural Science 71:595–600CrossRefGoogle Scholar
  85. Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). Hortscience 35:1121–1123Google Scholar
  86. Toma S, Isac M, Balan V, Ivascu A (1998) Detection of plum pox virus by enzyme-linked immunosorbent assay in some apricot and peach varieties and hybrids in Romania. Acta Virologica 42:276–277PubMedGoogle Scholar
  87. Uematsu C, Sasakuma T, Ogihara Y (1991) Phylogenetic-relationships in the stone fruit group of Prunus as revealed by restriction fragment analysis of chloroplast DNA. Japanese Journal of Genetics 66:59–69CrossRefPubMedGoogle Scholar
  88. Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao RT (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P-mume. Plant Journal 39:573–586CrossRefPubMedGoogle Scholar
  89. Utsunomiya H, Takekoshi S, Gato N, Utatsu H, Motley ED, Eguchi K, Fitzgerald TG, Mifune M, Frank GD, Eguchi S (2002) Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sciences 72:659–667CrossRefPubMedGoogle Scholar
  90. Utsunomiya H, Yamakawa T, Kamei J, Kadonosono K, Tanaka SI (2005) Anti-hyperglycemic effects of plum in a rat model of obesity and type 2 diabetes, Wistar fatty rat. Biomedical Research-Tokyo 26:193–200CrossRefPubMedGoogle Scholar
  91. Vavilov NI (1992) The phyto-geographical basis for plant breeding. In: Dorofeyev VF (ed) Origin and Geography of Cultivated Plants. Cambridge University Press, Cambridge, pp 316–366Google Scholar
  92. Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003a) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theoretical and Applied Genetics 107:239–247Google Scholar
  93. Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llacer G, Badenes ML (2003b) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Molecular Genetics and Genomics 269:685–691Google Scholar
  94. Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llacer G, Badenes ML (2006) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Molecular Ecology Notes 6:789–791CrossRefGoogle Scholar
  95. Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reproduction 13:251–257CrossRefGoogle Scholar
  96. Yamane H, Ushijima K, Sassa H, Tao R (2003) The use of the S haplotype-specific F-box protein gene, SFB as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theoretical and Applied Genetics 107:1357–1361CrossRefPubMedGoogle Scholar
  97. Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics 106:435–444PubMedGoogle Scholar
  98. Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krska B, Abbott AG (2008) Origin of resistance to plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genetics & Genomes 4:403–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kevin M. Folta
    • 1
  • Susan E. Gardiner
    • 1
  1. 1.Horticultural Sciences Department and the Graduate Program in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations