Advertisement

Sweet and Sour Cherries: Linkage Maps, QTL Detection and Marker Assisted Selection

  • Elisabeth Dirlewanger
  • Jacques Claverie
  • Amy F. Iezzoni
  • Ana Wünsch
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

The cherry is one of the most popular temperate fruit crops despite its relatively high price. The fruits are attractive in appearance because of their bright shiny skin color, their subtle flavor and sweetness are appreciated by most consumers. Compared to other temperate fruits, such as apple and peach, breeding improvements for cherries have been slow. The long generation time and the large plant size of cherry trees severely limit classical breeding. Thus, the integration of molecular markers in breeding programs should be a powerful tool to hasten cultivar development. Only a few genetic linkage maps are available for sweet or sour cherry and quantitative trait loci (QTLs) have been reported only for sour cherry. Until now, most of the efforts have concentrated on the use of molecular markers in order to (i) identify the S-alleles controlling gametophytic self-incompatibility, (ii) characterize cultivars, and (iii) assess genetic diversity.

Keywords

Linkage Group Sweet Cherry Sour Cherry Cherry Tree Late Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arumuganathan K, and Earle ED (1991) Nuclear DNA Content of some important plant species. Plant Mol Biol Rep 9: 208–219.CrossRefGoogle Scholar
  2. Arús P, Yamamoto T, Dirlewanger E, and Abbott AG (2006) Synteny in the Rosaceae. In: Plant Breeding Reviews Vol 27, Wiley.Google Scholar
  3. Badenes ML, and Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90: 1035–1041.CrossRefGoogle Scholar
  4. Ballester J, Boskovic R, Batlle I, Arús P, Vargas F, and de Vicente MC (1998) Localisation of the self-incompatibily gene on the almond linkage map. Plant Breed 116: 69–72.CrossRefGoogle Scholar
  5. Beaver JA, and Iezzoni AF (1993) Allozyme inheritance in tetraploid sour cherry (Prunus cerasus L.). J Am Soc Hortic Sci 118: 873–877.Google Scholar
  6. Beaver JA, Iezzoni AF, and Ramn C (1995) Isozyme diversity in sour, sweet and ground cherry. Theor Appl Genet 90: 847–852.CrossRefGoogle Scholar
  7. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, and Mydin KK (2002) An expanded genetic map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529.CrossRefPubMedGoogle Scholar
  8. Bond AM (2004) Bulk segregant analysis for bloom time QTL in sour cherry (Prunus cerasus L.) MS Thesis, Mich. State Univ. 54 pp.Google Scholar
  9. Bošković R, and Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90: 245–250.CrossRefGoogle Scholar
  10. Bošković R, and Tobutt KR (1998) Inheritance and linkage relationships of isoenzymes in two interspecific cherry progenies. Euphytica 103:273–286.CrossRefGoogle Scholar
  11. Bošković R, Russell K, and Tobutt KR (1997) Inheritance of stylar ribonucleases in cherry progenies, and reassignment of incompatibility alleles to two incompatibility groups. Euphytica 95: 221–228.CrossRefGoogle Scholar
  12. Bošković R, Tobutt KR, Schmidt H, and Sonneveld T (2000) Re-examination of (in)compatibility genotypes of two John Innes self-compatible sweet cherry selections. Theor Appl Genet 101: 234–240.CrossRefGoogle Scholar
  13. Bošković R, Wolfram B, Tobutt KR, Cerovic R, and Sonneveld T (2006) Inheritance and interactions of incompatibility alleles in the tetraploid sour cherry. Theor Appl Genet 112:315–326.CrossRefPubMedGoogle Scholar
  14. Brettin TS, Karle R, Crowe EL, and Iezzoni AF (2000) Chloroplast inheritance and DNA variation in sweet, sour, and ground cherry. J Hered 91:75–79.CrossRefPubMedGoogle Scholar
  15. Brown SK, Iezzoni A, and Fogle HW (1996) Cherries. In: Moore JN (ed) Fruit breeding, Vol 1: Tree and tropical fruits. John Wiley & Sons, Inc., pp 213–255.Google Scholar
  16. Canli FA (2004a) Development of a second generation genetic linkage map for sour cherry using SSR markers. Pak J Biol Sci 7:1676–1683.Google Scholar
  17. Canli FA (2004b) A modified-bulk segregant analysis for late blooming in sour cherry. Pak J Biol Sci 7:1684–1688.Google Scholar
  18. Choi C, Tao R, and Andersen RL (2002) Identification of self-incompatibility alleles and pollen incompatibility groups in sweet cherry by PCR based S-allele typing and controlled pollination. Euphytica 123: 9–20.CrossRefGoogle Scholar
  19. Clark JB, Sargent DJ, Boskovic RI, Belaj A, and Tobutt KR (2008) A cherry map from the interspecific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes (in press).Google Scholar
  20. Crane MB, and Brown AG (1937) Incompatibility and sterility in the sweet cherry, Prunus avium L. J Pomol Hortic Sci 15: 86–116.Google Scholar
  21. De Cuyper B, T Sonneveld, and KR Tobutt (2005) Determining self-incompatibility genotypes in Belgian wild cherries. Mol Ecol 14: 945–955.CrossRefPubMedGoogle Scholar
  22. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin Heidelberg New York.Google Scholar
  23. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, and Arús P (2004b). Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci 101: 9891–9896.Google Scholar
  24. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, and Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L) Batsch). Theor Appl Genet 98: 18–31.CrossRefGoogle Scholar
  25. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, and Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105: 145–159.CrossRefPubMedGoogle Scholar
  26. FAO (2005) FAOSTAT database 2004. Web site at http://faostat.fao.org
  27. Faust M, and Suranyi D (1997) Origin and dissemination of cherry. Hort Rev 19: 263–317.Google Scholar
  28. Foulongne M, Pascal T, Pfeiffer F, and Kervella J (2003) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12: 33–50.CrossRefGoogle Scholar
  29. Gisbert AD, Badenes ML, Tobutt KR, Llacer G and Romero C (2008) Determination of the S-allele composition of sweet cherry (Prunus avium L.) cultivars groen in the southeast of Spain by PCR analysis. J Hort Sci Biotech 83:246–252.Google Scholar
  30. Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F and McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 435:805–810.CrossRefGoogle Scholar
  31. Hancock AM, and Iezzoni AF (1988) Malate dehydrogenase isozyme patterns in seven Prunus species. Hort Sci 23: 381–383.Google Scholar
  32. Hauck NR, Iezzoni AF, Yamane H, and Tao R (2001) Revisiting the S-allele nomenclature in sweet cherry (Prunus avium) using RFLP profiles. J Am Soc Hortic Sci 126: 654–660.Google Scholar
  33. Hauck NR, Yamane H, Tao R, and Iezzoni AF (2002) Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sex Plant Reprod 15: 39–46.CrossRefGoogle Scholar
  34. Hauck NR, Ikeda K, Tao R, and Iezzoni AF (2006a) The mutated S 1-haplotype in sour cherry has an altered S-haplotype specific F-box protein gene. J Hered 97: 514–520.Google Scholar
  35. Hauck NR, Yamane H, Tao R, and Iezzoni AF (2006b) Accumulation of non-functional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172: 1191–1198.Google Scholar
  36. Hedrick UP (1915) The history of cultivated cherries. In: The cherries of New York., ed Albany, JB Lyon, NY,. pp. 39–64.Google Scholar
  37. Hillig KW, and Iezzoni AF (1988) Multivariate analysis of a sour cherry germplasm collection. J Am Soc Hortic Sci 113: 928–934.Google Scholar
  38. Howell GS, and Stackhouse SS (1973) The effect of defoliation time on acclimation and dehardening in tart cherry (Prunus cerasus L.). J Amer Soc Hortic Sci 98: 312–316.Google Scholar
  39. Hua ZH, Fields A and Kao TH (2008) Biochemical Models for S-RNase-Based Self-Incompatibility. Molecular Plant Advance Access doi:10.1093/mp/ssn032.Google Scholar
  40. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, and Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armaniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105: 182–191.CrossRefPubMedGoogle Scholar
  41. Iezzoni AF (1996) Sour cherry cultivars: Objectives and methods of fruit breeding and characteristics of principal commercial cultivars: In Cherrries: Crop Physiology, Production and Uses (Eds. Webster AD and Looney NE), University press, Cambridge, UK, 223–241.Google Scholar
  42. Iezzoni AF (2004) Developmental and QTL analyses of large fruit size in sweet cherry. The 2nd International Rosaceae genome mapping conference, Clemson University, May 22–24th 2004.Google Scholar
  43. Iezzoni AF, and Hancock AM (1996) Chloroplast DNA variation in sour cherry. Acta Hortic 410: 115–120.Google Scholar
  44. Iezzoni AF, and Mulinix CA (1992) Variation in bloom time in a sour cherry germplasm collection. Hort Sci 27: 1113–1114.Google Scholar
  45. Iezzoni AF, Schmidt H, and Albertini A (1990) Cherries (Prunus). In: Moore JN, Ballington JR, Jr. (eds) Genetic Resources of Temperate Fruit and Nut Crops, Vol 1. I.S.H.S., Wageningen, The Netherlands, pp 111–173.Google Scholar
  46. Iezzoni AF, Anderson RL, Schmidt H, Tao R, Tobutt KR, and Wiersma PA (2005) Proceedings of the S-allele workshop at the 2001 International Cherry Symposium. Acta Hort 667: 25–35.Google Scholar
  47. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR and Tao R (2004a). Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16: 235–243.Google Scholar
  48. Ikeda K, Watari A, Ushijima K, Yamane H, Hauck NR, Iezzoni AF, and Tao R (2004b) Molecular markers for the self-compatible S 4'-haplotype, a pollen-part mutant in sweet cherry (Prunus avium L.). J Am Soc Hortic Sci 129: 724–728.Google Scholar
  49. Ikeda K, Ushijima K, Yamane H, Tao R, Hauck N, Sebolt A, and Iezzoni AF (2005) Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17: 289–296.CrossRefGoogle Scholar
  50. Kao TH, and Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16: 572–583.CrossRefGoogle Scholar
  51. Keitt GS, Blodgett EC, Wilson EE, and Magie RO (1937) The epidemiology and control of cherry leaf spot. Univ Wisc Agric Exp Stn Res Bull 132.Google Scholar
  52. Kitashiba H, Zhang SL, Wu J, Shirasawa K and Nishio T (2008) S genotyping and S screening utilizing SFB gene polymorphism in Japanese plum and sweet cherry by dot-blot analysis. Mol Breed 21:339–349.CrossRefGoogle Scholar
  53. Krahl KH, Lansari A, and Iezzoni AF (1991) Morphological variation within a sour cherry collection. Euphytica 52: 47–55.Google Scholar
  54. Krussmann G (1978) Manual of cultivated broadleaved trees and shrubs. Vol. 3. PRU-Z. B.T. Batsford Ltd London, pp. 18–58.Google Scholar
  55. Lambert P, Hagen LS, Arús P, and Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ x peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130.CrossRefPubMedGoogle Scholar
  56. Lansari A, and Iezzoni A (1990) A Preliminary-Analysis of Self-Incompatibility in Sour Cherry. Hort Sci 25: 1636–1638.Google Scholar
  57. Lapins KO (1970) The Stella cherry. Fruit Varieties Horticultural Digest 24: 19–20.Google Scholar
  58. Lewis D (1949) Structure of the incompatibility gene. II. Induced mutation rate. Heredity 3: 339–355.CrossRefPubMedGoogle Scholar
  59. Lewis D and Crowe LK (1954) Structure of the incompatibility gene. IV Types of mutation in Prunus avium L Heredity 8:357–363.Google Scholar
  60. Luu DT, Qin XK, Laublin G, Yang Q, Morse D, and Cappadocia M (2001) Rejection of S-heteroallelic pollen by a dual-specific S-RNase in Solanum chacoense predicts a multimeric SI pollen component. Genetics 159: 329–335.PubMedGoogle Scholar
  61. Marchese AKR, Tobutt KR, Raimondo A, Motisi A, Boskovic RI, Clarke J and Caruso T (2007a) Morphological characteristics, microsatellite fingerprinting and determination of incompatibility genotypes of Sicilian sweet cherry cultivars. J Hort Sci Biotech 82: 41–48.Google Scholar
  62. Marchese A, Boskovic RI, Caruso T, Raimondo A, Cutuli M, and Tobutt KR (2007b) A new self-compatibility haplotype in sweet cherry ‘Kronio’, S 5′, attributed to a pollen-part mutation in the SFB gene. J Expt Bot 58: 4347–4356.Google Scholar
  63. Matthews P, and Dow KP (1969) Incompatibility groups: sweet cherry (Prunus avium) En: Knight RL (eds) Abstract Bibliography of Fruit Breeding and Genetics to 1965: Prunus, pp 540–544. Commonwealth Agricultural Bureaux, Farnham Royal.Google Scholar
  64. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, and Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957.CrossRefPubMedGoogle Scholar
  65. McClure (2006) New views of S-RNase-based self-incompatibility. Curr Opin Plant Biol 9: 639–646.CrossRefPubMedGoogle Scholar
  66. McCubbin AG, and Kao TH (2000) Molecular recognition and response in pollen and pistil interactions. Ann Rev Cell Dev Biol 16: 333–364.CrossRefGoogle Scholar
  67. Olden EJ, and Nybom N (1968) On the origin of Prunus cerasus L. Hereditas 70: 3321–3323.Google Scholar
  68. Olmstead JW, Iezzoni AF, and MD Whiting (2007) Genotypic differences in sweet cherry fruit size are primarily a function of cell number. J Amer Soc Hort Sci 132(5): 697–703.Google Scholar
  69. Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, and Iezzoni AF (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes (DOI 10.1007/s11295-008-0161-10).Google Scholar
  70. Quarta R, Dettori MT, Verde I, Gentile A, and Broda Z (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hortic 465: 51–59.Google Scholar
  71. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, and Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild related species P. davidiana. Theor Appl Genet 109: 884–897.CrossRefPubMedGoogle Scholar
  72. Redalen G (1984) Fertility in sour cherries. Gartenbauwissenschaft 49:212–217.Google Scholar
  73. Rehder A (1947) Manual of cultivated trees and shrubs, 2nd edn. Macmillan Compagny, New-York pp. 452–481.Google Scholar
  74. Santi F, and Lemoine M (1990) Genetic markers for Prunus avium L. 2. Clonal identifications and discrimination from P. cerasus and P. cerasus x P. avium. Annales des Sciences Forestières 47: 219–227.CrossRefGoogle Scholar
  75. Saunier R, and Claverie J (2001) Le cerisier : évolution de la culture en France et dans le monde. Point sur les variétés, les porte-greffe. Le fruit belge 490: 50–62.Google Scholar
  76. Schuster M, Flachowsky H, and Kohler D (2007) Determination of self-incompatibility genotypes in sweet cherry (Prunus avium L.) accessions and cultivars of the German Fruit Genet Bank and from private collections. Plant Breed 126: 533–540.CrossRefGoogle Scholar
  77. Schuster M, and Schreiber H (2000) Genome investigation in sour cherry, P. cerasus L. Acta Hort 538: 375–379.Google Scholar
  78. Schueler S, Tusch A, and Scholz F (2006) comparative analysis of within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 15:3231–3243.CrossRefPubMedGoogle Scholar
  79. Sonneveld T, Robbins TP, Boskovic R, and Tobutt KR (2001) Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor Appl Genet 102:1046–1055.CrossRefGoogle Scholar
  80. Sonneveld T, Tobutt KR, and Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S 1 to S 16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070.CrossRefPubMedGoogle Scholar
  81. Sonneveld T, Tobutt KR, Vaughan SP, and Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17: 37–51.CrossRefPubMedGoogle Scholar
  82. Sonneveld T, Robbins TP and Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307.CrossRefGoogle Scholar
  83. Stockinger EJ, Mulinix CA, Long CM, Brettin TS, and Iezzoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture populations. J Hered 87: 214–218.PubMedGoogle Scholar
  84. Tanksley S, Young N, Paterson A, and Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7: 257–264.CrossRefGoogle Scholar
  85. Tao R, Yamane H, and Akira H (1999a) Cloning of genomic DNA sequences encoding encoding S1-, S3-, S4- and S6-RNases (accession nos. AB031815, AB031816, AB031817, and AB0311818) from sweet cherry (Prunus avium L.). Plant Physiol 121: 1057.Google Scholar
  86. Tao R, Yamane H, and Sugiura A (1999b) Cloning and sequences of cDNAs encoding S1- and S4-RNases (accession nos. AB028153 and AB028154) from sweet cherry (Prunus avium L.) (PGR99-121). Plant Physiol 120:1207.Google Scholar
  87. Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, and Mori H (1999c) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124: 224–233.Google Scholar
  88. Tavaud M (2002) Diversité génétique du cerisier doux (Prunus avium L.) sur son aire de répartition : Comparaison avec ses espèces apparentées (P. cerasus et P. x gondouinii) et son compartiment sauvage. Thèse de l’ENSAM, 98p.Google Scholar
  89. Tavaud M, Zanetto A, David JL, Laigret F, and Dirlewanger E (2004) Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus. Heredity 93: 631–638.CrossRefPubMedGoogle Scholar
  90. Tehrani G, and Brown SK (1992) Pollen–incompatibility and self-fertility in sweet cherry. Plant Breed Rev 9: 367–388.Google Scholar
  91. Tobutt KR, Bošković R, Cerovic R, Sonneveld T, and Ruzic D (2004) Identification of incompatibility alleles in the tetraploid species sour cherry. Theor Appl Genet 108: 775–785.CrossRefPubMedGoogle Scholar
  92. Tsukamoto T, Hauck NR, Tao R, Jiang N, and Iezzoni AF (2006) Molecular characterization of three non-functional S-hapltypes in sour cherry (Prunus cerasus). Plant Mol Biol 62: 371–383.CrossRefPubMedGoogle Scholar
  93. Tsukamoto T, Potter D, Tao R, Vieira CP, Vieira J, and AF Iezzoni (2008) Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.). J Expt Bot (in press).Google Scholar
  94. Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, and Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P-mume. Plant Journal 39: 573–586.CrossRefPubMedGoogle Scholar
  95. Vaughan SP, Russell K, Sargent DJ and Tobutt KR (2006) Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility geneotype. Theor Appl Genet 112:856–866.CrossRefPubMedGoogle Scholar
  96. Vaughan SP, Boskovic RI, Gisbert-Climent, Russell K, and Tobutt KR (2008) Characterization of novel S-alleles from cherry (Prunus avium L.). Tree Genet Genomes 4:531–541.CrossRefGoogle Scholar
  97. Vilanova S, Romero C, Abbott A G, Llacer G, and Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107: 239–247.CrossRefPubMedGoogle Scholar
  98. Viruel MA, Madur D, Dirlewanger E, Pascal T, and Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 465: 79–88.Google Scholar
  99. Wang D, Karle R, Brettin TS, and Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97: 1217–1224.CrossRefGoogle Scholar
  100. Wang D, Karle R, and Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100: 535–544.CrossRefGoogle Scholar
  101. Webster AD (1996) The taxonomic classification of sweet and sour cherries and a brief history of their cultivation. In: Cherries: crop physiology, production and uses. Cab international, Wallingford, pp. 3–23.Google Scholar
  102. Wiersma PA, Wu Z, Zhou L, Hampson C, and Kappel F (2001) Identification of new self-incompatibility alleles in sweet cherry (Prunus avium L.) and clarification of incompatibility groups by PCR and sequencing analysis. Theor Appl Genet 102: 700–708.CrossRefGoogle Scholar
  103. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, and Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83: 294–300.Google Scholar
  104. Wunsch A, and Hormaza JI (2004a) Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.). Theor Appl Genet 108: 299–305.Google Scholar
  105. Wunsch A, and Hormaza JI (2004b) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17: 203–210.Google Scholar
  106. Wunsch A, and Hormaza JI (2004c) Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet Res Crop Evol 51: 635–641.Google Scholar
  107. Wunsch A, and Hormaza JI (2004d) S-allele identification by PCR analysis in sweet cherry cultivars. Plant Breed 123: 327–331.Google Scholar
  108. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamagushi M, and Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51: 271–278.CrossRefGoogle Scholar
  109. Yamane H, Tao R, Murayama H, Ishiguro M, Abe Y, Soejima J, and Sugiura A (2000a) Determining S- genotypes of two sweet cherry (Prunus avium L.) cultivars, ‘Takasago (Rockport Bigarreau)’ and ‘Hinode (Early Purple)’. J Jap Soc Hortic Sci 69: 29–34.Google Scholar
  110. Yamane H, Tao R, Murayama H, and Sugiura A (2000b) Determining the S-genotypes of several sweet cherry cultivars based on PCR-RFLP analysis. J Hortic Sci Biotechnol 75: 562–567.Google Scholar
  111. Yamane H, Tao R, Sugiura A, Hauck NR, and Iezzoni AF (2001) Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). J Am Soc Hortic Sci 126: 661–667.Google Scholar
  112. Yamane H, Ikeda K, Ushijima K, Sassa H, and Tao R (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44: 764–769.CrossRefPubMedGoogle Scholar
  113. Zhou L, Kappel F, MacDonald R, Hampson C, Bakkeren G, and Wiersma PA (2002) Determination of S-genotypes and self-fertility of sweet cherry in Summerland advanced selections. J Am Pomol Soc 56:173–179.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elisabeth Dirlewanger
    • 1
  • Jacques Claverie
    • 1
  • Amy F. Iezzoni
    • 1
  • Ana Wünsch
    • 1
  1. 1.Institut National de la Recherche Agronomique, Centre de Bordeaux, Unité de Recherches sur les Espèces Fruitières et la VigneVillenave d’Ornon CedexFrance

Personalised recommendations