Advertisement

Genetic Engineering of Plum (Prunus domestica L.) for Plant Improvement and Genomics Research in Rosaceae

  • Cesar Petri
  • Ralph Scorza
  • Chris Dardick
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Fruit trees are among the most recalcitrant of plants to regenerate adventitious shoots. In most woody fruit species, transformation and regeneration are difficult and often limited to a few genotypes or to seedlings (Petri and Burgos, 2005). This feature is the major limiting factor preventing the development of gene transfer technologies for fruit trees (Petri and Scorza, 2008). Such barriers slow the ability to relate the wealth of Prunus structural data, namely from peach, directly to testable questions of agricultural relevance.

Keywords

Indole Butyric Acid Shoot Regeneration Medium Prunus Domestica Papaya Ringspot Virus Rosaceous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4: 277–284PubMedGoogle Scholar
  2. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. In: J Janick (ed.) Plant Breeding Reviews 27 (pp.175–211). John Wiley & Sons, NJ (USA)Google Scholar
  3. Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45CrossRefPubMedGoogle Scholar
  4. Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep (on line) Doi 10.1007/s00299-008-0523-zGoogle Scholar
  5. Bassi G, Cossio F (1991) In vitro shoot regeneration on “Bluefre” and “Susina di Dro” prune cultivars (Prunus domestica L.). Acta Hort 289:81–82Google Scholar
  6. Beachy RN, Loesh-Fries S, Tumer NE (1990) Coat protein-mediated resistance against virus infection. Ann Rev Phytopath 28: 451–474CrossRefGoogle Scholar
  7. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043CrossRefPubMedGoogle Scholar
  8. Callahan A, Scorza R (2007) Effects of a peach antisense ACC oxidase gene on plum fruit quality. In: RE Litz and R Scorza (eds.) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Hortic 738:567–573Google Scholar
  9. Cox K, Layne D, Scorza R, Schnabel G (2006) Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta 224:1373–1383CrossRefPubMedGoogle Scholar
  10. Csányi M, Wittner A, Nagy A, Balla I, Vértessy J, Palkovics L, Balázs E (1999) Tissue culture of stone fruit plants basis for their genetic engineering. J Plant Biotechnol 1:91–95Google Scholar
  11. Cseke LJ, Cseke SB, Podila GK (2007) High efficiency poplar transformation. Plant Cell Rep 26:1529–1538CrossRefPubMedGoogle Scholar
  12. Darbani B, Eimanifar A, Stewart CN Jr., Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90CrossRefPubMedGoogle Scholar
  13. Dominguez A, Fagoaga C, Navarro L, Moreno P, Peña L (2002) Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol Genet Genomics 267:544–556CrossRefPubMedGoogle Scholar
  14. Ebinuma H, Sugita K, Matsubaga E, Yamakado M, Komamine A (1997) Principle of MAT vector. Plant Biotech 14:133–139Google Scholar
  15. Escalettes V, Dahuron F, Ravelonandro M, Dosba F (1994) Utilisation de la transgénose pour l‘obtention de pruniers et d‘abricotiers exprimant le gène de la protéine capside du plum pox potyvirus. Bull OEPP/EPPO 24:705–711Google Scholar
  16. Escalettes V, Dosba F (1993) In vitro adventitious shoot regeneration from leaves of Prunus spp. Plant Sci 90:201–209CrossRefGoogle Scholar
  17. Ghorbel R, Juarez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99: 350–358CrossRefGoogle Scholar
  18. Gonsalves D (1998) Control of papaya ringspot virus in papaya – A case study. Ann Rev Phytopath 36:415–437CrossRefGoogle Scholar
  19. Gonzalez-Padilla IM, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep 22:38–45CrossRefPubMedGoogle Scholar
  20. Hily J-M, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13: 427–436CrossRefPubMedGoogle Scholar
  21. Hily J-M, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated eith resistance to Plum pox virus in a transgenic woody perennial plum tree. MPMI 18: 794–799CrossRefPubMedGoogle Scholar
  22. Hily J-M, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum pox virus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana Domin. and plum (Prunus domestica L.). J Am Soc Hortic Sci 132(6):850–858Google Scholar
  23. Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18(8):1846–1861CrossRefPubMedGoogle Scholar
  24. Hu Z, Yang Z, Wang J (1988) Isolation and partial characterization of an antifungal protein from Gastrodia elata corm. Acta Botanica Yunnanica 10:373–380Google Scholar
  25. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81CrossRefPubMedGoogle Scholar
  26. López-Noguera S, Petri C, Burgos L (2006) Production of marker-free transgenic plants after transformation of apricot cultivars. Acta Horticult 717:225–227Google Scholar
  27. López-Noguera S, Petri C, Burgos L (2007) Using MAT vector system to produce marker-free transformed apricot plants. In: Litz R.E. and Scorza R. (eds.) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Horticult 738:607–612Google Scholar
  28. Malinowski T, Cambra M, Capote N, Zawadzka B, Gorris MT, Scorza R, Ravelonandro M (2006) Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis 90:1012–1018CrossRefGoogle Scholar
  29. Mante S, Morgens PH, Scorza R, Cordts JM and Callahan AM (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Bio/Technol 9:853–857CrossRefGoogle Scholar
  30. Mante S, Scorza R, Cordts JM (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica, and Prunus cerasus. Plant Cell Tiss Org Cult 19:1–11CrossRefGoogle Scholar
  31. Mikhailov RV, Dolgov SV (2007) Transgenic plum (Prunus domestica L.) plants obtained by Agrobacterium-mediated transformation of leaf explants with use of various selective agents. In: Litz R.E. and Scorza R. (eds.) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Hort 738:613–623Google Scholar
  32. Mikhailov RV, Firsov A, Dolgov SV (2007) Transgenic plums (Prunus domestica L.) of commercial cultivar “Startovaya” express the plum pox virus coat protein gene. Acta Horticult (in press)Google Scholar
  33. Miki B, and McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107: 193–232CrossRefPubMedGoogle Scholar
  34. Nagel AK, Scorza R, Petri C, Schnabel G (2008) Generation and characterization of transgenic plum lines expressing the Gastrodia-anti fungal protein. HortScience 43(5) (in press)Google Scholar
  35. Peña L, Martín-Trillo M, Juárez JA, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267CrossRefPubMedGoogle Scholar
  36. Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26CrossRefPubMedGoogle Scholar
  37. Petri C, Scorza R (2008) Peach. In C Kole and T C Hall (eds.). “A Compendium of Transgenic Crop Plants: Temperate Fruits and Nuts”, Blackwell Publishing, Oxford, UK. (in press)Google Scholar
  38. Petri C, Webb K, Hily J-M, Dardick C, Scorza R (2008) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed (in press)Google Scholar
  39. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu L-J (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17:471–482CrossRefPubMedGoogle Scholar
  40. Ravelonandro M, Monsion M, Teycheney PY, Delbos R, Dunez J (1992) Construction of a chimeric viral gene expressing plum pox virus coat protein. Gene 120: 167–173CrossRefPubMedGoogle Scholar
  41. Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis 81:1231–1235CrossRefGoogle Scholar
  42. Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10:201–209CrossRefPubMedGoogle Scholar
  43. Scorza R, Hily J-M, Callahan AM, Malinowski T, Cambra M, Capote N, Zagrai I, Damsteegt V, Briard P and Ravelonandro M (2007) Deregulation of Plum Pox resistant transgenic plum ‘HoneySweet’. In: RE Litz and R Scorza (eds.) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Hortic 738:669–673Google Scholar
  44. Scorza R, Levy L, Damsteegt V, Yepes LM, Cordts J, Hadidi A, Slightom J, Gonsalves D (1995) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J Am Soc Hortic Sci 120: 943–952Google Scholar
  45. Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L) express the plum pox virus coat protein gene. Plant Cell Rep 14:18–22CrossRefGoogle Scholar
  46. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE. (2008) Multiple models for Rosaceae genomics. Plant Phys. May 16, 2008; 10.1104/pp.107.115618Google Scholar
  47. Song J, Lu S, Chen Z-Z, Lourenco R, Chiang VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: A functional genomic tool for woody plants. Plant Cell Physiol 47(11):1582–1589CrossRefPubMedGoogle Scholar
  48. United States Department of Agriculture (2006) California prune (dried plum) acreage report. USDA, NASS, California Field Office, P.O. Box 1259, Sacramento, CA 95812Google Scholar
  49. Urtubia C, Devia J, Castro A, Zamora P, Aguirre C, Tapia E, Barba P, Dell‘Orto P, Moynihan MR, Petri C, Scorza R and Prieto H (2008) Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Reports. Doi 10.1007/s00299-008-0559-0Google Scholar
  50. Yancheva SD, Druart P, Watillon B (2002) Agrobacterium-mediated transformation of plum (Prunus domestica L.). Acta Horticulturae 577: 215–217Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cesar Petri
    • 1
  • Ralph Scorza
    • 1
  • Chris Dardick
    • 1
  1. 1.Department of Genetic Improvement of Fruit CropsUSDA-ARS-Appalachian Fruit Research StationUSA

Personalised recommendations