Advertisement

Peach Structural Genomics

  • Carlo Pozzi
  • Alberto Vecchietti
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 6)

Peach (Prunus persica) belongs to the Prunus genus and is a member of the Rosaceae family. It has been selected as a model species for genomics studies in virtue of several features (Abbott et al., 2002): it has a short juvenile phase (2–3 years) if compared to many other tree species; it has a small genome, just about twice the size of Arabidopsis (5.9 x 108 bp; Baird et al., 1994); it is diploid with a base chromosome number of x = 8; it is the best characterized Prunus species, where a number of traits of agronomic interest are under the control of monogenic loci (recently reviewed in Dirlewanger et al., 2004) The recent development of genomics and functional genomics tools demonstrated throughout this volume is making possible to effectively implement comparative genomics strategies in Rosaceae, using peach as the “basic” genome (Abbott et al., 2002).

Keywords

Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Bacterial Artificial Chromosome Library Soluble Solid Content Powdery Mildew Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott A, Rajapaske S, Sosinski B, Lu ZX, Sossy-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, and Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465: 41–49Google Scholar
  2. Abbott AG, Lecouls AC, Wang Y, Georgi L, Scorza R, and Reigherd G (2002) Peach: the model genome for rosaceae genomics. Acta Hort 592: 199–209Google Scholar
  3. Abbott A, Zhebentyayeva T (2007) Physical Mapping of Peach, Department of Genetics& Biochemistry, Clemson University, Clemson, SC, 29634, USA http://www.bioinfo.wsu.edu/gdr/physical_map.sht
  4. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 11: 554–560CrossRefGoogle Scholar
  5. Aranzana MJ, Garcia-Mas, Carbo J, and Arus P (2002) Development and variability of microsatellite markers in peach. Plant Breed 121: 87–92CrossRefGoogle Scholar
  6. Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, and Arùs P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106: 819–825PubMedGoogle Scholar
  7. Baird WV, Estager As, and Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119: 1312–1316Google Scholar
  8. Barale F, Lazzari B, Abbott A, Salamini F, and Pozzi C (2006) Steps towards the production of a function map in peach (Prunus persica). In PGEM Congress, Venice, ItalyGoogle Scholar
  9. Bergougnoux V, Claverie M, Bosselut N, Lecouls AC, Esmenjaud D, Dirlewanger E, and Salesses G (2002) Marker assisted selection of the Ma gene from Myrobalan plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hort 592: 223–228Google Scholar
  10. Bielenberg D, Wang Y, Fan S, Reighard G, Scorza R, and Abbott A (2004( A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95: 436–444CrossRefPubMedGoogle Scholar
  11. Blenda AV, Reighard GL, Baird WV, Georgi LL, and Abbott AG (2002) Molecular markers and candidate resistance genes: a genetic study of tolerance to ring nematode in peach. Plant, Animal & Microbe Genomes X Conference. San Diego,USAGoogle Scholar
  12. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, and Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3: 341–350CrossRefGoogle Scholar
  13. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM,Kocsisne GM, and Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45: 520–529CrossRefPubMedGoogle Scholar
  14. Brummell DA, Dal Cin V, Lurie S, Crisosto CH, and Labavitch JM (2004) Cell wall metabolism during the development of mealiness in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55: 2041–2052CrossRefPubMedGoogle Scholar
  15. Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81: 68–71Google Scholar
  16. Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, and Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110: 660–668CrossRefPubMedGoogle Scholar
  17. Chaparro JX, Werner DJ, O’Malley D, and Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87: 805–815CrossRefGoogle Scholar
  18. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, and Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99: 65–72CrossRefGoogle Scholar
  19. Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, and Esmenjaud D (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108: 765–773Google Scholar
  20. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, and Esmenjaud D (2004b) High resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma form Myrobalan plum using a large -insert BAC DNA library. Theor Appl Genet 109: 1318–1327Google Scholar
  21. Decroocq V, Fave MG, Hagen L, Bordenave L, and Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106: 912–922PubMedGoogle Scholar
  22. Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Shcurdi-Levraud V, and Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272: 680–689CrossRefGoogle Scholar
  23. Dettori MT, Quarta R, and Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs and morphological markers. Genome 44: 783–790CrossRefPubMedGoogle Scholar
  24. Dirlewanger E, Pascal T, Zuger C, and Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] x Prunus davidiana hybrids. Theor Appl Genet 93: 909–919CrossRefGoogle Scholar
  25. Dirlewanger E, Pronier V, Parvery C, Rothan C, Guy A, and Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97: 888–895CrossRefGoogle Scholar
  26. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, and Monet C (1999) Mapping QTLs controlling fruit quality in peach. Theor Appl Genet 98: 18–31CrossRefGoogle Scholar
  27. Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arus P, and Laigret L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105: 127–138CrossRefPubMedGoogle Scholar
  28. Dirlewanger E, Poizat C, Cosson P, Lafargue B, Kleinhentz M, Claverie M, Bosselut N, Voisin R, Esmenjaud D, and Laigret F (2003) Genetic linkage maps of Myrobalan plum and of an almond-peach hybrid- Location of root-knot nematode resistance genes.7th International congress of plant molecular biology, ISPMB, Barcelona, Spain, 23–28 June 2003Google Scholar
  29. Dirlewanger E, Arùs P (2004) Molecular markers in plant breeding and crop improvement: markers in fruit tree breeding: improvement of peach. In Biotechnology in agriculture and forestry, vol. 55 (eds. L. Hoerst, Gerhard W.): Springer.Google Scholar
  30. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, and Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor Appl Genet 109: 827–838Google Scholar
  31. Dirlewanger E, Kleinhentz R, Voisin R, Claverie M, Lecouls AC, Esmenjaud JL, Poessel M, Faurobert M, Arús P, Gómez-Aparisi J, Xiloyannis C, and Di Vito M (2004b) Breeding for a new generation of Prunus rootstocks: an example of MAS. Acta Hort 658: 581–590Google Scholar
  32. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, and Arus P (2004c) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA. 29: 9891–9896Google Scholar
  33. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, and Moing A (2006) Development of a second-generation genetic linkage map for peach (Prunus persica) and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3: 1–3CrossRefGoogle Scholar
  34. Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, and Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105: 145–159CrossRefPubMedGoogle Scholar
  35. Foolad MR, Arulsekar S, Becerra V, and Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91: 262–269CrossRefGoogle Scholar
  36. Foulongne M, Pascal T, Arus P, and Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107: 227–38Google Scholar
  37. Foulongne M, Pascal T, Pfeiffer F, and Kervella J (2003b) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12: 33–50Google Scholar
  38. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, and Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach. Theor Appl Genet 105: 1151–1158CrossRefPubMedGoogle Scholar
  39. Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Am Soc Hortic Sci 130: 24–33Google Scholar
  40. Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, and Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110: 1419–1428CrossRefPubMedGoogle Scholar
  41. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, and Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171: 1305–1309CrossRefPubMedGoogle Scholar
  42. Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, and Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102: 1169–1176CrossRefGoogle Scholar
  43. Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, and Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97: 1034–1041CrossRefGoogle Scholar
  44. Jun JH, Chung KH, Jeong SB, and Lee HJ (2003) Development of RAPD and SCAR markers linked to the flesh adhesion gene in peach. Acta Hort 625: 89–96Google Scholar
  45. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, and Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 9(5):130CrossRefGoogle Scholar
  46. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, and Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 4:7:81Google Scholar
  47. Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, and Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res: D1034-40Google Scholar
  48. Ku HM, Liu J, Doganlar S, and Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44: 470–475CrossRefPubMedGoogle Scholar
  49. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, and Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111: 1504–1513CrossRefPubMedGoogle Scholar
  50. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, and Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6: S16CrossRefPubMedGoogle Scholar
  51. Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, and Pozzi C (2007) Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinformatics 2:S9Google Scholar
  52. Lecouls AC, Reighard AC, Abbott AG, and Dirlewanger E (2002) Physical mapping and integration of QTL intervals involved in fruit quality on peach fruit variety and rootstock molecular maps. Acta Hort 592: 273–278Google Scholar
  53. Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E, and Esmenjaud D (2004) Marker-assisted selection for the wide spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breed 13: 113–124CrossRefGoogle Scholar
  54. Lewers KS, Styan SMN, Hokanson SC, and Bassil NV (2005) Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hortic Sci 130: 102–115Google Scholar
  55. Liang FS, Zhang KC, Yu ZW, Yang JL, Zhabg XM, Jin DM, and Wang B (2004) Construction, characterization and screening of a transformation-competent artificial chromosome library of peach. Plant Mol Biol Rep 22: 37–48CrossRefGoogle Scholar
  56. Lu ZX, Sosinski B, Reighard GL, Baird WV, and Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207CrossRefGoogle Scholar
  57. Lu ZX, Sossey-Alaoui K, Reighard GL, Baird WV, and Abbott AG (1999) Development and characterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstock breeding. Theor Appl Genet 99: 115–122CrossRefGoogle Scholar
  58. Martinez-Gomez P, Sanchez-Perez R, Rubio M, Dicenta F, Gradziel TM, and Sozzi GO (2005) Application of recent biotechnologies to Prunus tree crop genetic improvement Cien Inv Agr 32: 73–96Google Scholar
  59. Moing A, Svanella L, Rolin D, Gaudillere M, Gaudillere JP, and Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hortic Sci 123: 770–775Google Scholar
  60. Monet R, Guye A, Roy M, and Dachary N (1996) Peach mendelian genetics: a short review of results. Agronomie 16: 321–329CrossRefGoogle Scholar
  61. Peace CP, Ahmad R, Gradziel TM, Dandekar AM, and Crisosto CH (2004) The use of molecular genetics to improve peach and nectarine post-storage quality. Acta Hort 682: 403–410Google Scholar
  62. Peace CP, Crisosto CH, and Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16: 21–31CrossRefGoogle Scholar
  63. Quarta R, Dettori MT, Sartori A, and Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521: 233–241Google Scholar
  64. Quilot B, Wu BH, Kervella J, Genard M, Foulogne M, and Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109: 884–897CrossRefPubMedGoogle Scholar
  65. Sargent DJ, Rys A, Nier S, Simpson DW, and Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114: 373–384CrossRefPubMedGoogle Scholar
  66. Scorza R, Mehlenbacher SA, and Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hort Sci 110: 547–552Google Scholar
  67. Scorza R., Ravelonandro M (2002) Gene silencing-based resistance to plum pox virus. Act Hort 622: 119–122Google Scholar
  68. Silva C, Garcia-Mas J, Sanchez AM, Arus P, and Oliveira M (2005) Looking into flowering time in almond (Prunus dulcis): the candidate gene approach. Theor Appl Genet 110: 959–968CrossRefPubMedGoogle Scholar
  69. Sosinski B, Sossey-Alaoui K, Rajapakse S, Glassmoyer K, Ballard RE, Abbott AG, Lu ZX, Baird WV, Reighard G, Tabb A, and Scorza R (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach [Prunus persica (L.) Batsch] for use in marker assisted selection. Acta Hort 465: 61–68Google Scholar
  70. Sosinski B, Gannavarapu M, Hager LD, Beck GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, and Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] Theor Appl Genet 101: 421–428CrossRefGoogle Scholar
  71. Tani E, Polidoros AN, and Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27: 649–659PubMedGoogle Scholar
  72. Verde I, Quarta R, Cedrola C, and Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592: 291–295Google Scholar
  73. Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, and Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica x P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111: 1013–1021CrossRefPubMedGoogle Scholar
  74. Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, and Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91: 964–971CrossRefGoogle Scholar
  75. Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, and Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103: 1174–1179CrossRefGoogle Scholar
  76. Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, and Abbott AG (2002a) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45: 319–328Google Scholar
  77. Wang Y, Georgi LL, Reighard GL, Scorza R, and Abbott AG (2002b) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93: 352–358Google Scholar
  78. Wang Y, Garay L, Reighard GL, Georgi LL, Abbott AG, and Scorza R (2002c) Development of bacterial artificial chromosome contigs in the evergrowing gene region in peach. Acta Hort 592: 183–189Google Scholar
  79. Xu Q, Wen XP, and Deng XX (2005) Isolation of TIR and NonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet 111: 819–830CrossRefPubMedGoogle Scholar
  80. Xu Q, Wen X, and Deng X (2007) Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol 44: 315–324CrossRefPubMedGoogle Scholar
  81. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, and Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51: 271–278CrossRefGoogle Scholar
  82. Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Sci Hort 96: 81–90CrossRefGoogle Scholar
  83. Yamamoto T, Yamaguchi M, and Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hort Sci 74: 204–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Parco Tecnologico Padano, via Einstein Loc. C.na CodazzaItaly

Personalised recommendations