Advertisement

A Toolbox for Triticeae Genomics

  • Etienne Paux
  • Pierre Sourdille
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)

Abstract

In the last two decades, progress in cereal genomics has been remarkable, enabling a better understanding of the structure and function of the cereal genomes. However, significant advances mainly concerned rice and maize, whereas for the Triticeae species, namely wheat, barley and rye, the development of genomic tools and resources has long been hampered by the size and the complexity of their genomes. Recently, new technologies have allowed the development of a toolbox for Triticeae genomics comparable to what is available for rice and maize. Triticeae scientists and breeders can now benefit from a wide range of tools, including molecular markers, genetic maps, EST sequences, microrarrays, BAC libraries and transformation systems that can be applied to structural, functional, evolutionary and comparative genomic studies of the Triticeae genomes.

Keywords

Amplify Fragment Length Polymorphism Bacterial Artificial Chromosome Bread Wheat Long Terminal Repeat Bacterial Artificial Chromosome Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S.Y., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M.J., Howes, N., Sharp, P., Vaughan, P., Rathmell, B., Huttner, E. and Kilian, A. (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113, 1409–1420.PubMedGoogle Scholar
  2. Akhunov, E.D., Akhunova, A.R. and Dvorak, J. (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor. Appl. Genet. 111, 1617–1622.PubMedGoogle Scholar
  3. Allouis, S., Moore, G., Bellec, A., Sharp, R., Faivre Rampant, P., Mortimer, K., Pateyron, S., Foote, T.N., Griffiths, S., Caboche, M. and Chalhoub, B. (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res. Commun. 31, 331–338.Google Scholar
  4. Appels, R., Francki, M. and Chibbar, R.N. (2003) Advances in cereal functional genomics. Funct. Integr. Genomics 3, 1–24.PubMedGoogle Scholar
  5. Barrett, B.A. and Kidwell, K.K. (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci. 38, 1261–1271.Google Scholar
  6. Barrett, B.A., Kidwell, K.K. and Fox, P.N. (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci. 38, 1271–1278.Google Scholar
  7. Beaubien, K.A. and Smith, K.P. (2006) New SSR markers for barley derived from the EST database. Barley Genet. Newsl. 36, 30–43.Google Scholar
  8. Becker, J. and Heun, M. (1995) Barley microsatellites-allele variation and mapping. Plant Mol. Biol. 27, 835–845.PubMedGoogle Scholar
  9. Becker, J., Vos, P., Kuiper, M., Salamini, F. and Heun, M. (1995) Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249, 65–73.PubMedGoogle Scholar
  10. Bertin, P., Gregoire, D., Massart, S. and de Froidmont, D. (2001) Genetic diversity among European cultivated spelt revealed by microsatellites. Theor. Appl. Genet. 102, 148–156.Google Scholar
  11. Bhat, P.R., Lukaszewski, A., Cui, X., Xu, J., Svensson, J.T., Wanamaker, S., Waines, J.G. and Close, T.J. (2007) Mapping translocation breakpoints using a wheat microarray. Nucleic Acids Res. 35, 2936–2943.PubMedGoogle Scholar
  12. Blackburn, E.H. (1984) The molecular structure of centromeres and telomeres. Annu. Rev. Biochem. 53, 163–194.PubMedGoogle Scholar
  13. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedGoogle Scholar
  14. Bryan, G., Collins, A., Stephenson, P., Orry, A., Smith, J. and Gale, M.D. (1997) Isolation and characterization of microsatellite from hexaploid bread wheat. Theor. Appl. Genet. 94, 557–563.Google Scholar
  15. Burkhamer, R.L., Lanning, S.P., Martens, R.J., Martin, J.M. and Talbert, L.E. (1998) Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci. 38, 243–248.Google Scholar
  16. Burr, B., Evola, S., Burr, F. and Beckmann, J. (1983) The application of restriction fragment length polymorphism to plant breeding. In: J. Setlow and A. Hollaender (eds.), Genetic Engineering: principles and methods, Plenum Press, New York, pp. 45–59.Google Scholar
  17. Cadalen, T., Boeuf, C., Bernard, S. and Bernard, M. (1997) An intervarietal molecular marker map in Triticum aestivum L. em Thell and comparison with a map from a wide cross. Theor. Appl. Genet. 94, 367–377.Google Scholar
  18. Cenci, A., Chantret, N., Kong, X., Gu, Y., Anderson, O.D., Fahima, T., Distelfeld, A. and Dubcovsky, J. (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor. Appl. Genet. 107, 931–939.PubMedGoogle Scholar
  19. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D. and Gale, M.D. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78, 495–504.Google Scholar
  20. Cheung, W.Y., Moore, G., Money, T.A. and Gale, M.D. (1992) HpaII library indicates methylation-free islands in wheat and barley. Theor. Appl. Genet. 84, 739–746.Google Scholar
  21. Close, T.J. (2005) The barley microarray: a community vision and application to abiotic stress. Czech J. Genet. Plant Breed. 41, 144–152.Google Scholar
  22. Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A. and Wise, R.P. (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol. 134, 960–968.PubMedGoogle Scholar
  23. Conley, E.J., Nduati, V., Gonzalez-Hernandez, J.L., Mesfin, A., Trudeau-Spanjers, M., Chao, S., Lazo, G.R., Hummel, D.D., Anderson, O.D., Qi, L.L., Gill, B.S., Echalier, B., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvorák, J., Peng, J.H., Lapitan, N.L.V., Pathan, M.S., Nguyen, H.T., Ma, X.-F., Miftahudin, Gustafson, J.P., Greene, R.A., Sorrells, M.E., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Sidhu, D., Dilbirligi, M., Gill, K.S., Choi, D.W., Fenton, R.D., Close, T.J., McGuire, P.E., Qualset, C.O. and Anderson, J.A. (2004) A 2600-Locus Chromosome Bin Map of Wheat Homoeologous Group 2 Reveals Interstitial Gene-Rich Islands and Colinearity With Rice. Genetics 168, 625–637.PubMedGoogle Scholar
  24. Crismani, W., Baumann, U., Sutton, T., Shirley, N., Webster, T., Spangenberg, G., Langridge, P. and Able, J.A. (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7, 267.PubMedGoogle Scholar
  25. Devey, M.E. and Hart, G.E. (1993) Chromosomal localization of intergenomic RFLP loci in hexaploid wheat. Genome 36, 913–918.PubMedGoogle Scholar
  26. Devos, K. and Gale, M. (1993) The genetic maps of wheat and their potential in pplant-breeding. Outlook Agric. 22, 93–99.Google Scholar
  27. Devos, K.M., Millan, T. and Gale, M.D. (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85, 784–792.Google Scholar
  28. Dover, G.A. and Tautz, D. (1986) Conservation and divergence in multigene families: alternatives to selection and drift. Philos. Trans. R. Soc. Lond. B Biol. Sci. 312, 275–289.PubMedGoogle Scholar
  29. Dvorak, J., McGuire, P.E. and Cassidy, B. (1988) Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689.Google Scholar
  30. Edwards, K.J., Barker, J.H., Daly, A., Jones, C. and Karp, A. (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20, 758–760.PubMedGoogle Scholar
  31. Ellis, R.P., McNicol, J.W., Baird, E., Booth, A., Lawrence, P., Thomas, B. and Powell, W. (1997) The use of AFLPs to examine genetic relatedness in barley. Mol. Breed. 3, 359–369.Google Scholar
  32. Eujayl, I., Sorrells, M.E., Baum, M., Wolters, P. and Powell, W. (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 104, 399–407.PubMedGoogle Scholar
  33. Faccioli, P., Lagonigro, M.S., De Cecco, L., Stanca, A.M., Alberici, R. and Terzi, V. (2002) Analysis of differential expression of barley ESTs during cold acclimatization using microarray technology. Plant Biol, 4, 630–639.Google Scholar
  34. Feldman, M. and Levy, A.A. (2005) Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet. Genome Res. 109, 250–258.PubMedGoogle Scholar
  35. Flavell, A.J., Knox, M.R., Pearce, S.R. and Ellis, T.H. (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650.PubMedGoogle Scholar
  36. Flavell, A.J., Bolshakov, V.N., Booth, A., Jing, R., Russell, J., Ellis, T.H. and Isaac, P. (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res. 31, e115.PubMedGoogle Scholar
  37. Flavell, R.B., Rimpau, J. and Smith, D.B. (1977) Repeated sequence DNA relationship in four cereal genomes. Chromosoma 63, 205–222.Google Scholar
  38. Gale, M.D., Atkinson, M.D., Chinoy, C.N., Hartcourt, R.L., Jiu, J., Li, Q.Y. and Devos, K.M. (1995) Genetic maps of hexaploid wheat. In: Z.S. Li and Z.Y. Xin (eds.), Proc 8th Int. Wheat Genet Symp. Beijing, China, pp. 29–40.Google Scholar
  39. Gao, L.F., Tang, J.F., Li, H.W. and Jia, J.Z. (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol. Breed. 12, 245–261.Google Scholar
  40. Gill, K.S., Lubbers, E.L., Gill, B.S., Raupp, W.J. and Cox, T.S. (1991) A genetic-linkage map of Triticum tauschii (DD) and its relationship to the D-genome of bread wheat (AABBDD). Genome 34, 362–374.Google Scholar
  41. Goodman, M. (1985) Rates of molecular evolution: the hominoid slowdown. BioEssays 3, 9–14.PubMedGoogle Scholar
  42. Graner, A., Siedler, H., Jahoor, A., Herrmann, R.G. and Wenzel, G. (1990) Assessment of the degree and the type of Restriction-Fragment-Length-Polymorphism in barley (Hordeum vulgare). Theor. Appl. Genet. 80, 826–832.Google Scholar
  43. Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.Google Scholar
  44. Greaves, D. and Patient, R. (1985) (AT)n is an interspersed repeat in the Xenopus genome. EMBO J. 4, 2617–2626.PubMedGoogle Scholar
  45. Grewal, T.S., Rossnagel, B.G., Pozniak, C.J. and Scoles, G.J. (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor. Appl. Genet. 116, 529–539.PubMedGoogle Scholar
  46. Grodzicker, T., Williams, J., Sharp, P. and Sambrook, J. (1974) Physical mapping of tem-perature-sensitive mutations of adenoviruses. Cold Spring Harb. Symp. Quant. Biol. 39, 439–446.Google Scholar
  47. Gupta, P.K. and Varshney, R.K. (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113, 163–185.Google Scholar
  48. Gupta, P.K. and Varshney, R. (2004) Cereal Genomics. Kluwer Academic Publishers, Dordrecht.Google Scholar
  49. Gupta, P.K., Rustgi, S., Sharma, S., Singh, R., Kumar, N. and Balyan, H.S. (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270, 315–323.PubMedGoogle Scholar
  50. Guyomarc’h, H., Sourdille, P., Edwards, K., Bernard, M. (2002a) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor. Appl. Genet. 105, 736–744.Google Scholar
  51. Guyomarc’h, H., Sourdille, P., Charmet, G., Edwards, J. and Bernard, M. (2002b) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 104, 1164–1172.Google Scholar
  52. Hackauf, B. and Wehling, P. (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 121, 17–25.Google Scholar
  53. Hamada, H., Petrino, M.G. and Kakunaga, T. (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465–6469.PubMedGoogle Scholar
  54. Hazen, S.P. and Kay, S.A. (2003) Gene arrays are not just for measuring gene expression. Trends Plant Sci. 8, 413–416.PubMedGoogle Scholar
  55. Hearnden, P.R., Eckermann, P.J., McMichael, G.L., Hayden, M.J., Eglinton, J.K. and Chalmers, K.J. (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor. Appl. Genet. 115, 383–391.PubMedGoogle Scholar
  56. Henry, R.J. (2007) Genomics as a tool for cereal chemistry. Cereal Chem. 84, 365–369.Google Scholar
  57. Hentschel, C.C. (1982) Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295, 714–716.PubMedGoogle Scholar
  58. Heun, M., Borghi, B. and Salamini, F. (1998) Wheat domestication – Response. Science 279, 303–304.Google Scholar
  59. Heun, M., Kennedy, A.E., Anderson, J.A., Lapitan, N.L.V., Sorrells, M.E. and Tanksley, S.D. (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34, 437–447.Google Scholar
  60. Holton, T.A., Christopher, J.T., McClure, L., Harker, N. and Henry, R.J. (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol. Breed. 9, 63–71.Google Scholar
  61. Hossain, K.G., Kalavacharla, V., Lazo, G.R., Hegstad, J., Wentz, M.J., Kianian, P.M.A., Simons, K., Gehlhar, S., Rust, J.L., Syamala, R.R., Obeori, K., Bhamidimarri, S., Karunadharma, P., Chao, S., Anderson, O.D., Qi, L.L., Echalier, B., Gill, B.S., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Akhunov, E.D., Dvorák, J., Miftahudin, Ross, K., Gustafson, J.P., Radhawa, H.S., Dilbirligi, M., Gill, K.S., Peng, J.H., Lapitan, N.L.V., Greene, R.A., Bermudez-Kandianis, C.E., Sorrells, M.E., Feril, O., Pathan, M.S., Nguyen, H.T., Gonzalez-Hernandez, J.L., Conley, E.J., Anderson, J.A., Choi, D.W., Fenton, D., Close, T.J., McGuire, P.E., Qualset, C.O. and Kianian, S.F. (2004) A Chromosome Bin Map of 2148 Expressed Sequence Tag Loci of Wheat Homoeologous Group 7. Genetics 168, 687–699.PubMedGoogle Scholar
  62. Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.PubMedGoogle Scholar
  63. Hulbert, S.H., Bai, J., Fellers, J.P., Pacheco, M.G. and Bowden, R.L. (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18. Phytopathology 97, 1083–1093.PubMedGoogle Scholar
  64. Isidore, E., Scherrer, B., Bellec, A., Budin, K., Faivre-Rampant, P., Waugh, R., Keller, B., Caboche, M., Feuillet, C. and Chalhoub, B. (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Funct. Integr. Genomics 5, 97–103.PubMedGoogle Scholar
  65. Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A. (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, E25.PubMedGoogle Scholar
  66. Jahoor, A., Backes, G., Graner, A., Herrmann, R.G. and Fischbeck, G. (1991) Development of RFLP markers for barley. Plant Breed. 107, 73–76.Google Scholar
  67. Janda, J., Bartos, J., Safar, J., Kubalakova, M., Valarik, M., Cihalikova, J., Simkova, H., Caboche, M., Sourdille, P., Bernard, M., Chalhoub, B. and Dolezel, J. (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor. Appl. Genet. 109, 1337–1345.PubMedGoogle Scholar
  68. Janda, J., Safar, J., Kubalakova, M., Bartos, J., Kovarova, P., Suchankova, P., Pateyron, S., Cihalikova, J., Sourdille, P., Simkova, H., Faivre-Rampant, P., Hribova, E., Bernard, M., Lukaszewski, A., Dolezel, J. and Chalhoub, B. (2006) Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J. 47, 977–986.PubMedGoogle Scholar
  69. Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314, 67–73.PubMedGoogle Scholar
  70. Jiao, Y. and Deng, X.W. (2007) A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol. 8, R28.PubMedGoogle Scholar
  71. Jordan, M.C., Somers, D.J. and Banks, T.W. (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol. J. 5, 442–453.PubMedGoogle Scholar
  72. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.Google Scholar
  73. Kammorgan, L.N.W., Gill, B.S. and Muthukrishnan, S. (1989) DNA restriction fragment length polymorphisms – a strategy for genetic-mapping of D genome of wheat. Genome 32, 724–732.Google Scholar
  74. Kanazin, V., Talbert, H., See, D., DeCamp, P., Nevo, E. and Blake, T. (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol. Biol. 48, 529–537.PubMedGoogle Scholar
  75. Kantety, R.V., La Rota, M., Matthews, D.E. and Sorrells, M.E. (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48, 501–510.PubMedGoogle Scholar
  76. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D. and Bohnert, H.J. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889–905.PubMedGoogle Scholar
  77. Keim, P., Diers, B.W., Olson, T.C. and Shoemaker, R.C. (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126, 735–742.PubMedGoogle Scholar
  78. Kleinhofs, A., Kilian, A., Maroof, M.A.S., Biyashev, R.M., Hayes, P., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skadsen, R. and Steffenson, B.J. (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86, 705–712.Google Scholar
  79. Kota, R., Varshney, R.K., Thiel, T., Dehmer, K.J. and Graner, A. (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135, 145–151.PubMedGoogle Scholar
  80. Kota, R., Varshney, R.K., Prasad, M., Zhang, H., Stein, N. and Graner, A. (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct. Integr. Genomics 8, 223–233.PubMedGoogle Scholar
  81. Kubalakova, M., Vrana, J., Cihalikova, J., Simkova, H. and Dolezel, J. (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372.PubMedGoogle Scholar
  82. Leigh, F., Lea, V., Law, J., Wolters, P., Powell, W. and Donini, P. (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133, 359–366.Google Scholar
  83. Li, W., Zhang, P., Fellers, J.P., Friebe, B. and Gill, B.S. (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40, 500–511.PubMedGoogle Scholar
  84. Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R. and Dubcovsky, J. (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42, 1176–1182.PubMedGoogle Scholar
  85. Ling, P. and Chen, X.M. (2005) Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome 48, 1028–1036.PubMedGoogle Scholar
  86. Linkiewicz, A.M., Qi, L.L., Gill, B.S., Ratnasiri, A., Echalier, B., Chao, S., Lazo, G.R., Hummel, D.D., Anderson, O.D., Akhunov, E.D., Dvorák, J., Pathan, M.S., Nguyen, H.T., Peng, J.H., Lapitan, N.L.V., Miftahudin, Gustafson, J.P., La Rota, C.M., Sorrells, M.E., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Sandhu, D., Bondareva, S.N., Gill, K.S., Conley, E.J., Anderson, J.A., Fenton, R.D., Close, T.J., McGuire, P.E., Qualset, C.O. and Dubcovsky, J. (2004) A 2500-Locus Bin Map of Wheat Homoeologous Group 5 Provides Insights on Gene Distribution and Colinearity With Rice. Genetics 168, 665–676.PubMedGoogle Scholar
  87. Liu, Y.G. and Tsunewaki, K. (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn. J. Genet. 66, 617–633.PubMedGoogle Scholar
  88. Marino, C., Nelson, J., Lu, Y., Sorrels, M., Leroy, P., Lopes, C. and Hart, G. (1996) RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39, 359–366.PubMedGoogle Scholar
  89. Metzgar, D., Bytof, J. and Wills, C. (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10, 72–80.PubMedGoogle Scholar
  90. Miftahudin, Ross, K., Ma, X.-F., Mahmoud, A.A., Layton, J., Rodriguez Milla, M.A., Chikmawati, T., Ramalingam, J., Feril, O., Pathan, M.S., Surlan Momirovic, G., Kim, S., Chema, K., Fang, P., Haule, L., Struxness, H., Birkes, J., Yaghoubian, C., Skinner, R., McAllister, J., Nguyen, V., Qi, L.L., Echalier, B., Gill, B.S., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvorák, J., Dilbirligi, M., Gill, K.S., Peng, J.H., Lapitan, N.L.V., Bermudez-Kandianis, C.E., Sorrells, M.E., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Lazo, G.R., Chao, S., Anderson, O.D., Gonzalez-Hernandez, J., Conley, E.J., Anderson, J.A., Choi, D.-W., Fenton, R.D., Close, T.J., McGuire, P.E., Qualset, C.O., Nguyen, H.T. and Gustafson, J.P. (2004) Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4. Genetics 168, 651–663.PubMedGoogle Scholar
  91. Mingeot, D. and Jacquemin, J.M. (1999) Mapping of RFLP probes characterized for their polymorphism on wheat. Theor. Appl. Genet. 98, 1132–1137.Google Scholar
  92. Monroy, A.F., Dryanova, A., Malette, B., Oren, D.H., Ridha Farajalla, M., Liu, W., Danyluk, J., Ubayasena, L.W., Kane, K., Scoles, G.J., Sarhan, F. and Gulick, P.J. (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol. Biol. 64, 409–423.PubMedGoogle Scholar
  93. Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr. Biol. 5, 737–739.PubMedGoogle Scholar
  94. Morgante, M., Hanafey, M. and Powell, W. (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30, 194–200.PubMedGoogle Scholar
  95. Moullet, O., Zhang, H.B. and Lagudah, E.S. (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor. Appl. Genet. 99, 305–313.Google Scholar
  96. Muniz, L.M., Cuadrado, A., Jouve, N. and Gonzalez, J.M. (2001) The detection, cloning, and characterisation of WIS 2–1A retrotransposon-like sequences in Triticum aestivum L. and Triticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44, 979–989.PubMedGoogle Scholar
  97. Munkvold, J.D., Greene, R.A., Bermudez-Kandianis, C.E., La Rota, C.M., Edwards, H., Sorrells, S.F., Dake, T., Benscher, D., Kantety, R., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvorák, J., Miftahudin, Gustafson, J.P., Pathan, M.S., Nguyen, H.T., Matthews, D.E., Chao, S., Lazo, G.R., Hummel, D.D., Anderson, O.D., Anderson, J.A., Gonzalez-Hernandez, J.L., Peng, J.H., Lapitan, N., Qi, L.L., Echalier, B., Gill, B.S., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Sandhu, D., Erayman, M., Gill, K.S., McGuire, P.E., Qualset, C.O. and Sorrells, M.E. (2004) Group 3 Chromosome Bin Maps of Wheat and Their Relationship to Rice Chromosome 1. Genetics 168, 639–650.PubMedGoogle Scholar
  98. Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fujii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S. and Nishizawa, N.K. (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J. 30, 83–94.PubMedGoogle Scholar
  99. Nelson, J.C., Vandeynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Negre, S., Bernard, M. and Leroy, P. (1995a) Molecular mapping of wheat – homoeologous group-3. Genome 38, 525–533.Google Scholar
  100. Nelson, J.C., Vandeynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Merlino, M., Atkinson, M. and Leroy, P. (1995b) Molecular mapping of wheat – homoeologous group-2. Genome 38, 516–524.Google Scholar
  101. Nelson, J.C., Sorrells, M.E., Vandeynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D. and Anderson, J.A. (1995c) Molecular mapping of wheat – major genes and rearrangements in homoeologous group-4, group-5, and group-7. Genetics 141, 721–731.Google Scholar
  102. Nicot, N., Chiquet, V., Gandon, B., Amilhat, L., Legeai, F., Leroy, P., Bernard, M. and Sourdille, P. (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet. 109, 800–805.PubMedGoogle Scholar
  103. Nilmalgoda, S.D., Cloutier, S. and Walichnowski, A.Z. (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46, 870–878.PubMedGoogle Scholar
  104. Ogihara, Y., Mochida, K., Nemoto, Y., Murai, K., Yamazaki, Y., Shin, I.T. and Kohara, Y. (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 33, 1001–1011.PubMedGoogle Scholar
  105. Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M. and Higashitani, A. (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol. Genet. Genomics 278, 31–42.PubMedGoogle Scholar
  106. Ostrander, E.A., Jong, P.M., Rine, J. and Duyk, G. (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl Acad. Sci. USA 89, 3419–3423.PubMedGoogle Scholar
  107. Ozturk, Z.N., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R. and Bohnert, H.J. (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol. Biol. 48, 551–573.Google Scholar
  108. Pakniyat, H., Powell, W., Baird, E., Handley, L.L., Robinson, D., Scrimgeour, C.M., Nevo, E., Hackett, C.A., Caligari, P.D.S. and Forster, B.P. (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40, 332–341.PubMedGoogle Scholar
  109. Panstruga, R., Buschges, R., Piffanelli, P. and Schulze-Lefert, P. (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 26, 1056–1062.PubMedGoogle Scholar
  110. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.PubMedGoogle Scholar
  111. Peng, J.H., Zadeh, H., Lazo, J.P., Gustafson, J.P., Chao, S., Anderson, O.D., Qi, L.L., Echalier, B., Gill, B.S., Dilbirligi, M., Gill, K.S., Greene, R.A., Sorrells, M.E., Akhunov, E.D., Dvorák, J., Linkiewicz, A.M., Dubcovsky, J., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Mahmoud, A.A., Miftahudin, Conley, E.J., Anderson, J.A., Pathan, M.S., Nguyen, H.T., McGuire, P.E., Qualset, C.O. and Lapitan, N.L.V. (2004) Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis. Genetics 168, 609–623.PubMedGoogle Scholar
  112. Pestsova, E., Ganal, M.W. and Röder, M.S. (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43, 689–697.PubMedGoogle Scholar
  113. Pillen, K., Binder, A., Kreuzkam, B., Ramsay, L., Waugh, R., Förster, J. and Léon, J. (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor. Appl. Genet. 101, 652–660.Google Scholar
  114. Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J.W. and Waugh, R. (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79, 48–59.Google Scholar
  115. Qi, X. and Lindhout, P. (1997) Development of AFLP markers in barley. Mol. Gen. Genet. 254, 330–336.PubMedGoogle Scholar
  116. Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorák, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., La Rota, C.M., Munkvold, J.D., Sorrells, S.F., Sorrells, M.E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H.S., Sandhu, D., Bondareva, S.N., Gill, K.S., Mahmoud, A.A., Ma, X.-F., Miftahudin, Gustafson, J.P., Conley, E.J., Nduati, V., Gonzalez-Hernandez, J.L., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Zhang, D.S., Nguyen, H.T., Choi, D.-W., Fenton, R.D., Close, T.J., McGuire, P.E., Qualset, C.O. and Gill, B.S. (2004) A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics 168, 701–712.PubMedGoogle Scholar
  117. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic´, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D.Z., Farmer, P., Saker, L., Clarkson, D.T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M.C., Hollington, P.A., Aragues, R., Royo, A. and Dodig, D. (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 110, 865–880.PubMedGoogle Scholar
  118. Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. (2000) A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005.PubMedGoogle Scholar
  119. Randhawa, H.S., Dilbirligi, M., Sidhu, D., Erayman, M., Sandhu, D., Bondareva, S., Chao, S., Lazo, G.R., Anderson, O.D., Miftahudin, Gustafson, J.P., Echalier, B., Qi, L.L., Gill, B.S., Akhunov, E.D., Dvorák, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Sorrells, M.E., Conley, E.J., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Nguyen, H.T., Endo, T.R., Close, T.J., McGuire, P.E., Qualset, C.O. and Gill, K.S. (2004) Deletion Mapping of Homoeologous Group 6-Specific wheat Expressed Sequence Tags. Genetics 168, 677–686.PubMedGoogle Scholar
  120. Ratnayaka, I., Baga, M., Fowler, D.B. and Chibbar, R.N. (2005) Construction and characterization of a BAC library of a cold-tolerant hexaploid wheat cultivar. Crop Sci. 45, 1571–1577.Google Scholar
  121. Röder, M.S., Plaschke, J., Konig, S.U., Borner, A., Sorrells, M.E., Tanksley, S.D. and Ganal, M.W. (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246, 327–333.PubMedGoogle Scholar
  122. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.PubMedGoogle Scholar
  123. Rostoks, N., Park, Y.J., Ramakrishna, W., Ma, J.X., Druka, A., Shiloff, B.A., SanMiguel, P.J., Jiang, Z., Brueggeman, R., Sandhu, D., Gill, K., Bennetzen, J.L. and Kleinhofs, A. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Func. Int. Genomics 2, 51–59.Google Scholar
  124. Rostoks, N., Borevitz, J.O., Hedley, P.E., Russell, J., Mudie, S., Morris, J., Cardle, L., Marshall, D.F. and Waugh, R. (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol. 6, R54.PubMedGoogle Scholar
  125. Russell, J., Fuller, J., Young, G., Thomas, B., Taramino, G., Macaulay, M., Waugh, R. and Powell, W. (1997) Discriminating between barley genotypes using microsatellite markers. Genome 40, 442–450.PubMedGoogle Scholar
  126. Saal, B. and Wricke, G. (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42, 964–972.PubMedGoogle Scholar
  127. Sabot, F., Guyot, R., Wicker, T., Chantret, N., Laubin, B., Chalhoub, B., Leroy, P., Sourdille, P. and Bernard, M. (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol. Genet. Genomics 274, 119–130.PubMedGoogle Scholar
  128. Safar, J., Bartos, J., Janda, J., Bellec, A., Kubalakova, M., Valarik, M., Pateyron, S., Weiserova, J., Tuskova, R., Cihalikova, J., Vrana, J., Simkova, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Dolezel, J. and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.PubMedGoogle Scholar
  129. Saisho, D., Myoraku, E., Kawasaki, S., Sato, K. and Takeda, K. (2007) Construction and Characterization of a Bacterial Artificial Chromosome (BAC) Library from the Japanese Malting Barley variety ‘Haruna Nijo’. Breed. Sci. 57, 29–38.Google Scholar
  130. Schut, J.W., Qi, X. and Stam, P. (1997) Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor. Appl. Genet. 95, 1161–1168.Google Scholar
  131. Semagn, K., Bjornstad, A., Skinnes, H., Maroy, A.G., Tarkegne, Y. and William, M. (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49, 545–555.PubMedGoogle Scholar
  132. Shan, X., Blake, T.K. and Talbert, L.E. (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor. Appl. Genet. 98, 1072–1078.Google Scholar
  133. Sharp, P.J., Chao, S., Desai, S. and Gale, M.D. (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor. Appl. Genet. 78, 342–348.Google Scholar
  134. Shen, B., Wang, D.M., McIntyre, C.L. and Liu, C.J. (2005) A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor. Appl. Genet. 111, 1489–1494.PubMedGoogle Scholar
  135. Shi, B.-J., Miftahudin, Collins, N., Langridge, P. and Gustafson, J.P. (2007) Construction of a rye cv. Blanco BAC library, and progress towards cloning the rye Alt3 aluminium [aluminum] tolerance gene. Vortr. Pflanzenzuchtg. 71, 205–209.Google Scholar
  136. Shim, K.S., Cho, S.K., Jeung, J.U., Jung, K.W., You, M.K., Ok, S.H., Chung, Y.S., Kang, K.H., Hwang, H.G., Choi, H.C., Moon, H.P. and Shin, J.S. (2004) Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Rep. 22, 599–607.PubMedGoogle Scholar
  137. Shizuya, H., Birren, B., Kim, U.J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794–8797.PubMedGoogle Scholar
  138. Somers, D.J., Kirkpatrick, R., Moniwa, M. and Walsh, A. (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46, 431–437.PubMedGoogle Scholar
  139. Somers, D.J., Isaac, P. and Edwards, K. (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.PubMedGoogle Scholar
  140. Stachel, M., Lelley, T., Grausgruber, H. and Vollmann, J. (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet. 100, 242–248.Google Scholar
  141. Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H.N., Wolf, M., Kota, R., Varshney, R.K., Perovic, D., Grosse, I. and Graner, A. (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114, 823–839.PubMedGoogle Scholar
  142. Struss, D. and Pliescke, J. (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet. 97, 308–315.Google Scholar
  143. Suoniemi, A., Anamthawat-Jonsson, K., Arna, T. and Schulman, A.H. (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L) genome. Plant Mol. Biol. 30, 1321–1329.PubMedGoogle Scholar
  144. Taketa, S., Ando, H., Takeda, K., Harrison, G.E. and Heslop-Harrison, J.S. (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 100, 169–176.Google Scholar
  145. Tanksley, S.D., Miller, J., Paterson, A. and Bernatzky, R. (1988) Molecular mapping of plant chromosomes. In: J.F. Gustafson and R. Appels (eds.), Chromosome structure and function, Plenum Press, New York, pp. 157–173.Google Scholar
  146. Tautz, D. (1993) Notes on the definition and nomenclature of tandemly repetitive DNA sequences. Exs 67, 21–28.PubMedGoogle Scholar
  147. Tautz, D. and Renz, M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138.PubMedGoogle Scholar
  148. Tautz, D., Trick, M. and Dover, G.A. (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322, 652–656.PubMedGoogle Scholar
  149. Tenaillon, M.I., Sawkins, M.C., Long, A.D., Gaut, R.L., Doebley, J.F. and Gaut, B.S. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. USA 98, 9161–9166.PubMedGoogle Scholar
  150. Thiel, T., Michalek, W., Varshney, R.K. and Graner, A. (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422.PubMedGoogle Scholar
  151. Varshney, R.K., Grosse, I., Hahnel, U., Siefken, R., Prasad, M., Stein, N., Langridge, P., Altschmied, L. and Graner, A. (2006a) Genetic mapping and BAC assignment of EST-derived SSR markers shows nonuniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239–250.Google Scholar
  152. Varshney, R.K., Hoisington, D.A. and Tyagi, A.K. (2006b) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24, 490–499.Google Scholar
  153. Varshney, R.K., Thiel, T., Stein, N., Langridge, P. and Graner, A. (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell. Mol. Biol. Lett. 7, 537–546.PubMedGoogle Scholar
  154. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.PubMedGoogle Scholar
  155. Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X. and Close, T.J. (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics 6, 143–156.PubMedGoogle Scholar
  156. Walia, H., Wilson, C., Condamine, P., Ismail, A.M., Xu, J., Cui, X. and Close, T.J. (2007) Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise. BMC Genomics 8, 87.PubMedGoogle Scholar
  157. Wang, A.H., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. and Rich, A. (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686.PubMedGoogle Scholar
  158. Watson, L. and Henry, R.J. (2005) Microarray analysis of gene expression in germinating barley embryos (Hordeum vulgare L.). Funct. Integr. Genomics 5, 155–162.PubMedGoogle Scholar
  159. Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, B.B. and Powell, W. (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687–694.PubMedGoogle Scholar
  160. Weber, J.L. (1990) Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7, 524–530.PubMedGoogle Scholar
  161. Wei, F., Wing, R.A. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903–1917.PubMedGoogle Scholar
  162. Weintraub, H. and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856.PubMedGoogle Scholar
  163. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A. (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 101, 9915–9920.PubMedGoogle Scholar
  164. Xu, Z., Deal, K., Li, W., Covaleda, L., Chang, Y.-L., Dvorak, J., Luo, M.-C., Gill, B., Anderson, O. and Zhang, H. (2002) Construction and characterization of five large-insert BAC and BIBAC libraries of Aegilops tauschii, the diploid donor of the wheat D genome. In: 10th international plant and animal genome conference, San Diego, USA, pp. 101.Google Scholar
  165. Yan, G.P., Chen, X.M., Line, R.F. and Wellings, C. R. (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor. Appl. Genet. 106, 636–643.PubMedGoogle Scholar
  166. Yazaki, J., Kishimoto, N., Nakamura, K., Fujii, F., Shimbo, K., Otsuka, Y., Wu, J., Yamamoto, K., Sakata, K., Sasaki, T. and Kikuchi, S. (2000) Embarking on rice functional genomics via cDNA microarray: use of 3′ UTR probes for specific gene expression analysis. DNA Res. 7, 367–370.PubMedGoogle Scholar
  167. Yu, Y., Tomkins, J.P., Waugh, R., Frisch, D.A., Kudrna, D., Kleinhofs, A., Brueggeman, R.S., Muehlbauer, G.J., Wise, R.P. and Wing, R.A. (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101, 1093–1099.Google Scholar
  168. Zabeau, M. and Vos, P. (1993) Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent Application No. 92402629.7. Publication No. 0534858.Google Scholar
  169. Zhang, L.Y., Bernard, M., Leroy, P., Feuillet, C. and Sourdille, P. (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor. Appl. Genet. 111, 677–687.PubMedGoogle Scholar
  170. Zhang, L.Y., Ravel, C., Bernard, M., Balfourier, F., Leroy, P., Feuillet, C. and Sourdille, P. (2006) Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theor. Appl. Genet. 113, 407–418.PubMedGoogle Scholar
  171. Zhang, L.Y., Bernard, M., Ravel, C., Balfourier, F., Leroy, P., Feuillet, C. and Sourdille, P. (2007) Wheat EST-SSRs for tracing chromosome segments from a wide range of grass species. Plant Breed. 126, 251–258.Google Scholar
  172. Zonneveld, B.J., Leitch, I.J. and Bennett, M.D. (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. (Lond.) 96, 229–244.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.INRA UMR1095 Génétique, Diversité and Ecophysiologie des CéréalesDomaine de CrouëlFrance

Personalised recommendations