Early Stages of Meiosis in Wheat- and the Role of Ph1

  • Graham Moore
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Studies have revealed a number of loci which control chromosome pairing and recombination in wheat. Exploitation of such loci could have a major impact on breeding strategies. The review summarises our current knowledge of this process, with particular emphasis on the most extensively studied chromosome pairing locus to date, Ph1 (Pairing homoeologous 1). The Ph1 story to date has revealed that chromatin remodeling at the start of meiosis and the control of early stages of meiotic prophase I are both important.


Chromosome Pairing Hexaploid Wheat Synaptonemal Complex Wheat Chromosome Tetraploid Wheat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhunov, E., Goodyear, A., Geng, S., Qi, L.-L., Echalier, B., Gill, B., Miftahudin, P., Gustafson, P., Lazo, G., Chao, S., Anderson, O., Linkiewicz, M., Dubcovsky, J., Rota, M., Sorrells, M., Zhang, D., Nguyen, H., Kalavacharla, V., Hossain, K., Kianian, S., Peng, J., Lapitan, N., Gonzalez-Hernandez, J., Anderson, J., Choi, D.-W., Close, T., Dilbirligi, M., Gill, K., Walker-Simmons, K., Steber, C., McGuire, P., Qualset, C. and Dvorak, J. (2003) The organisation and rate of evolution of wheat genomes are correlated with recombination rates along the chromosome arms. Genome Res. 13, 753–763.PubMedCrossRefGoogle Scholar
  2. Al-Kaff, N., Knight, E., Bertin, I., Foot,e, T., Hart, N., Griffiths, S. and Moore, G.(2007) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum L.: with deletion mutants and expression profiling. Ann. Bot. doi:10.1093/aob/mcm252.Google Scholar
  3. Bass, H.W., Marshall, W.F., Sedat, J.W., Agard, D.A. and Cande, W.Z. (1997) Telomere cluster de novo before the initiation of synapsis; a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18.PubMedCrossRefGoogle Scholar
  4. Boden, S., Shadiac, N., Tucker, E., Langridge, P. and Able, J. (2007) Expression and functional analysis of TaAsy1 during meiosis of bread wheat Triticum aestivum. BMC Mol. Biol. 8, 65.PubMedCrossRefGoogle Scholar
  5. Bowers, J.E., Chapman, B.A. Rong, J. and Paterson, A.H. (2003) Unravelling angiosperm genome evolution by phytogenetic analysis of chromosomal duplication events. Nature 422, 433–438.PubMedCrossRefGoogle Scholar
  6. Chikashige, Y., Ding, D.Q., Imai, Y., Yamamoto, M., Haraguchi, T. and Hiraoka, Y. (1997) Meiotic nuclear reorganization switching the postion of centromeres and telomeres in the fission yeast. Scizaccharomyces pome. EMBO J. 16, 193–202.PubMedCrossRefGoogle Scholar
  7. Cohen, P.E., Pollack, S.E. and Pollard, J.W. (2006) Genetic analysis of chromosome pairing, recombination and cell cycle control during first meiotic prophase in mammals. Endrocine Reviews 27, 398–426.CrossRefGoogle Scholar
  8. Colas, I., Shaw, P., Prieto, P., Wanous, M., Spielmeyer, W., Mago, R. and Moore, G. (2008) Effective chromosome pairing requires chromatin remodelling at the onset of meiosis. Proc. Natl. Acad. Sci. USA 105, 6075–6080.PubMedCrossRefGoogle Scholar
  9. Corredor, E., Lukaszewski, A., Pachon, P., Allen, D.C. and Naranjo, T. (2007) Terminal regions of wheat chromosomes select their pairing partners in meiosis. Genetics 177, 699–706.PubMedCrossRefGoogle Scholar
  10. Crismani, W., Baumann, U., Sutton, T., Langridge, P. and Able, J. (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7, 267.PubMedCrossRefGoogle Scholar
  11. Curtis, C.A., Lukaszewski, A.J. and Chrzastek, M. (1991) Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome 34, 553–560.CrossRefGoogle Scholar
  12. Dong, C., Whitford, R. and Langridge, P. (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45, 116–124.PubMedCrossRefGoogle Scholar
  13. Dover, G.A. and Riley, R. (1972) Prevention of pairing of homeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes of Aegilops. Nature 240, 159–161.CrossRefGoogle Scholar
  14. Dubcovsky, J., Luo, M.-C. and Dvorak, J. (1995) Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc. Natl. Acad. Sci. USA 92, 6645–6649.PubMedCrossRefGoogle Scholar
  15. Dvorak, J., Deal, K.R. and Luo, M.C. (2006) Discovery and mapping of wheat Ph1 suppressor. Genetics 174, 17–27.PubMedCrossRefGoogle Scholar
  16. Feldman, M. (1966) The effect of chromosomes 5B, 5D, and 5A on chromosomal pairing in Triticum aestivum. Proc. Natl. Acad. Sci. USA 55, 1447–1453.PubMedCrossRefGoogle Scholar
  17. Feldman, M. (1993) Mode of action of Ph1 in wheat. Crop Sci. 33, 894–897.CrossRefGoogle Scholar
  18. Fu, H. and Dooner, H. (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99, 9573–9578.PubMedGoogle Scholar
  19. Griffiths, S., Sharp, R., Foote, T., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterisation of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.PubMedCrossRefGoogle Scholar
  20. Hale, T.K., Contreras, L.A. Morrison, A. and Herrera, R.E. (2006) Phosphorylation of the linker Histone H1 by Cdk regulates its binding to HP1. Mol. Cell. 22, 693–699.PubMedCrossRefGoogle Scholar
  21. Holm, P.B. (1986) Chromosome pairing and chiasma formation in allohexaploid wheat, Triticum aestivum, analysed by spreading of meiotic nuclei. Carlsberg Res. Commun. 51, 239–294.CrossRefGoogle Scholar
  22. Holm, P.B. (1988) Chromosome pairing and synaptonemal complex formation in hexaploid wheat nullisomic for chromosome 5B. Carlsberg Res. Commun. 53, 91–110.CrossRefGoogle Scholar
  23. Holm, P.B. and Wang, X. (1988) The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv Chinese Spring. Carlsberg Res. Commun. 53, 191–208.CrossRefGoogle Scholar
  24. Jasencakova, Z., Meister, A. and Schubert, I. (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92.PubMedCrossRefGoogle Scholar
  25. Jauhar, P.P., Rieva-Lizarazu, O., Dewey, W.G., Gill, B.S., Crane, C.F. and Bennett, J.H. (1991) Chromosome pairing relationships among the A,B and D genomes of bread wheat. Theor. Appl. Genet. 82, 441–449.CrossRefGoogle Scholar
  26. Jones, G.H. (1984) The control of chiasma distribution. Symp. Soc. Exp. Biol. 38, 293–320.PubMedGoogle Scholar
  27. King, J., Armstead, A., Donnison, A., Roberts, L., Harper, J., Skot, K., Elborough, K. and King, I. (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models are located in recombination poor/very poor regions of the genome. Genetics 177, 547–606.CrossRefGoogle Scholar
  28. Korzun, I. and Kunzel, G. (1996) The physical relationship of barley chromosome 5 (1H) to the linkage group of rice chromosome 5 and 10. Mol. Gen. Genet. 252, 225–231.Google Scholar
  29. Kopecky, D., Allen, D.C., Duchoslav, M., Dolezel, J. and Lukaszewski, A.J. (2007) Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat. Cytogenet Genome Res. 119, 263–267.PubMedCrossRefGoogle Scholar
  30. Kunzel, G., Korzun, L. and Meister, A. (2000) Cytogenetically integrated physical restriction length polymorphism maps of the barley genome based on translocation breakpoints. Genetics 154, 397–412.PubMedGoogle Scholar
  31. Lloyd, A.H., Milligan, A.S. Langridge, P. and Able, A. (2007) TaMSH7:A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare). 2007 BMC Plant Biology doi:10.1186/1471-2229-7-67.Google Scholar
  32. Luo, M.-C., Dubcovsky, J. and Dvorak, J. (1996) Recognition of homoeology by the wheat Ph1 locus. Genetics 144, 1195–1203.PubMedGoogle Scholar
  33. Lukaszweski, A.J. (1997) The development and meiotic behaviour of asymmetrical isochromosomes in wheat. Genetics 145, 1155–1203.Google Scholar
  34. Maestra, B., de Jong, J.H., Shepherd, K. and Naranjo, T. (2002) Chromosome arrangement and behaviour of rye homologous telosomes at the onset of meiosis in disomic wheat 5RL addition lines with and without the Ph1 locus. Chromosome Res. 10, 655–667.PubMedCrossRefGoogle Scholar
  35. Martinez, M., Cuñado, N., Carcelén, N. and Romero, C. (2001) The Ph1 and Ph2 loci play different roles in the specific behaviour of hexaploid wheat Triticum aestivum. Theor. Appl. Genet. 102, 751–758.CrossRefGoogle Scholar
  36. Martinez-Perez, E., Shaw, P., Reader, S., Aragon-Alcaide, L., Miller, T. and Moore, G. (1999) Homologous chromosome pairing in wheat. J. Cell Sci. 112, 1761–1769.PubMedGoogle Scholar
  37. Martinez-Perez, E., Shaw, P. and Moore, G. (2000) Polyploidy induces centromere association. J. Cell Biol. 148, 233–238.PubMedCrossRefGoogle Scholar
  38. Martinez-Perez, E., Shaw, P. and Moore, G. (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411, 204–207.PubMedCrossRefGoogle Scholar
  39. Martinez-Perez, E., Shaw, P., Aragon, L. and Moore, G. (2003) Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J. 36, 21–29.PubMedCrossRefGoogle Scholar
  40. Materson, J. (2003) Stomatal size in fossil plants:Evidence of polyploidy in majority of Angiosperms. Science 264, 421–424.CrossRefGoogle Scholar
  41. Mikhailova, E.I., Naranjo, T., Shepherd, L., Wennekes-van Eden, J., Heyting, C. and de Jong, J.H. (1998) The effect of the wheat Ph1 locus on chromosome organization and meiotic chromosome pairing analysed by genome painting. Chromosoma 107, 339–350.Google Scholar
  42. Mikhailova, E.I., Sosnikhina, S.P., Kirillova, G., Tikholiz, O.A. Smirnov, V.G., Jones, R.N. and Jenkins, G. (2001) Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L). J Cell Sci. 114, 1875–1882.PubMedGoogle Scholar
  43. Moore, G. (1995) Cereal genome evolution:pastoral pursuits with lego genomes. Curr Opin. Genet. Dev. 5, 717–724.PubMedCrossRefGoogle Scholar
  44. Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J., Malumbres, M. and Barbacid, M. (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35, 25–31.PubMedCrossRefGoogle Scholar
  45. Ozkan, H. and Feldman, M. (2001) Genotypic variation in tetraploid wheat affecting homoelogous pairing in hybrids with Aegilops peregrine. Genome 44, 1000–1006PubMedGoogle Scholar
  46. Niwa, O., Shimanuki, M. and Mika, F. (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J. 19, 3831–3840.PubMedCrossRefGoogle Scholar
  47. Page, S.L. and Hawley, R.S. (2003) Chromosome choreography: the meiotic ballet. Science 301, 785–789.PubMedCrossRefGoogle Scholar
  48. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterising the composition and evolution of homoeologous genomes in hexaploid wheat through BAC end sequencing of chromosome 3B. Plant J. 48, 463–474.PubMedCrossRefGoogle Scholar
  49. Prieto, P., Shaw, P. and Moore, G. (2004) Homologue recognition during meiosis is associated with change in chromatin conformation. Nat. Cell Biol. 6, 906–908.PubMedCrossRefGoogle Scholar
  50. Prieto, P., Santos, A.P., Moore, G. and Shaw, P. (2004b) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112, 300–307.Google Scholar
  51. Prieto, P., Moore, G. and Reader, S. (2005) Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 111, 505–510.PubMedCrossRefGoogle Scholar
  52. Pryor, A., Faulkner, K., Rhoades, M.M. and Peacock, W.J. (1980) Asynchronous replication of heterochromatin in maize. Proc. Natl. Acad. Sci. USA 77, 6705–6709.PubMedCrossRefGoogle Scholar
  53. Qi, L., Friebe, B., Zhang, P. and Gill, B.S. (2007) Homoeologous recombination, chromosome engineering and crop improvent. Chromosome Res. 15, 3–19PubMedCrossRefGoogle Scholar
  54. Riley, R. and Chapman, V. (1958) Genetic control of the cytological diploid behaviour of hexaploid wheat. Nature 182, 712–715.CrossRefGoogle Scholar
  55. Roberts, M., Reader, S., Dalgliesh, C., Miller, T., Foote, T., Fish, L., Snape, J. and Moore, G. (1999) Induction and characterisation of Ph1 wheat mutants. Genetics 1999, 153, 1909–1918.PubMedGoogle Scholar
  56. Sanchez-Moran, E., Benavonte, E. and Orellana, J. (2001) Analysis of karyotypic strability of homoeologous-pairing mutants in allopolyploid wheat. Chromosoma 110, 371–377.PubMedCrossRefGoogle Scholar
  57. Scherrer, B., Isidore, E., Klein, P., Kim, J.-S., Bellec, A., Chalhoub, B., Keller, B. and Feuillet, C. (2005) Large intraspecific haplotype variability at the Rph7 locus from rapid and recent divergence in the barley genome. Plant Cell 17, 361–374.PubMedCrossRefGoogle Scholar
  58. Sears, E. (1972) Agropyron-wheat transfers through induced homoeologous pairing. Can. J. Genet. Cytol. 14, 746.Google Scholar
  59. Sears, E. (1977) An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19, 585–593.Google Scholar
  60. Sutton, T., Whitford, R., Baurnann, U., Dong, M., Able, J. and Langridge, P. (2003) The Ph2 pairing homoeologous locus in wheat (Triticum aestivum);identification of candidate meiotic genes using a comparative genetics approach. Plant J. 36, 443–456.PubMedCrossRefGoogle Scholar
  61. Tresses-Sticken, E., Dresser, M.E. and Scherthan, H. (1999) Bouquet formation in budding yeast:initiation of recombination is not required for meiotic telomere clustering. J. Cell Sci. 112, 651–658.Google Scholar
  62. Ward, J.O., Reinholdt, L.G., Motley, W.W., Niswander, L.M., Deacon, D.C., Griffin, L.B., Langlais, K.K., Backus, V.L., Schimenti, K.J., O’Brien, M.J., Eppig, J.J. and Schimenti, J.C. (2007) Mutation in mouse He10, an E3 Ubiquitin ligase disrupts meiotic crossing over. PLos Genetics 3:e139 doi:10.1371/journal.pgen.003011139.Google Scholar
  63. William, H.M., Singh, R.P., Trethowan, R., Van Ginkel, M., Pellegrinshi, A., Huerta-Espin, A. and Hosington, D. (2005) Biotechnology apllications for wheat improvement CIMMYT. Turk J. Agri. 29, 113–119.Google Scholar
  64. Zickler, D. and Kleckner, N. (1999) Meiotic chromosomes: integrating structures. Ann. Rev. Genet. 33, 603–754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.John Innes CentreColneyUK

Personalised recommendations