Genetic Mapping in the Triticeae

  • Anke Lehmensiek
  • William Bovill
  • Peter Wenzl
  • Peter Langridge
  • Rudi Appels
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Genetic maps are the fundamental tools to identify features of phenotypes that are linked to specific genetic loci and eventually DNA sequences or genes. The major use of genetic linkage maps has, therefore, been to identify quantitative trait loci (QTL). Genetic maps are also essential for marker-assisted selection, comparative mapping, high-resolution mapping and map-based cloning. To date, over 40 maps with at least 300 markers have been published for different Triticeae populations. The quality of genetic maps can be affected by a number of factors and map curation ensures that map quality issues are identified and, where possible, resolved. We report on the issues involved in the production of quality genetic linkage maps by inspection of marker genotype data after map construction.

A number of technologies, which have been developed to complement the genetic linkage maps of the Triticeae such as radiation induced deletion mutations, optical mapping and HAPPY mapping, are discussed. We also report on the construction of consensus maps and the issues involved in the building of these.

Genetic map quality, including the ordering of loci within linkage groups, is of great importance for robust QTL detection and a number of QTL mapping methods are discussed in relation to features of the genetic map used in the analysis. Finally, we describe high-resolution mapping, which is used to improve the confidence interval for a QTL and to obtain markers closer to the trait of interest.


Quantitative Trait Locus Amplify Fragment Length Polymorphism Double Haploid Quantitative Trait Locus Mapping DArT Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aishwarya, V. and Sharma, P.C. (2007) UgMicroSatdb: database for mining microsatellites from unigenes. Nucl Acids Res, doi:10.1093/nar/gkm811, 1–4.Google Scholar
  2. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang Suszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M., Howes, N., Sharp, P., Vaughan, P., Rathmell, W., Huttner, E. and Killian, A. (2006) Diversity arrays technology (DArT) for high throughput profiling of the hexaploid wheat genome. Theoretical and Applied Genetics 113, 1409–1420.PubMedCrossRefGoogle Scholar
  3. Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S. and Moore, G. (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum; with deletion mutants and expression profiling. Annals of Botany 101, 863–872.Google Scholar
  4. Anderson, O.D., Greene, F.C., Yip, R.E., Halford, N.G., Shewry, P.R. and Malpica-Romero, J.M. (1989) Nucleotide sequences of the two high-molecular-weight glutenin genes from the D genome of hexaploid wheat, Triticum aestivum L. cv. Cheyenne. Nucleic Acids Research 17, 461–462.PubMedCrossRefGoogle Scholar
  5. Appels, R. (2003) A consensus molecular genetic map for wheat – a cooperative international effort. In: Progna, N.E. (ed.), Proceedings of the 10th International Wheat Genetics Symposium, 211–214.Google Scholar
  6. Appels, R., Francki, M. and Chibbar, R. (2003) Advances in cereal functional genomics. Functional and Integrative Genomics 3, 1–24.PubMedGoogle Scholar
  7. Asins, M.J. (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121, 281–291.CrossRefGoogle Scholar
  8. Badr, A., Miller, K.M., Schafer-Preg, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rhode, W. and Salamini, F. (2000) On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution 17, 499–510.PubMedGoogle Scholar
  9. Beavis, W.D. (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. Paper presented at the Proceedings of the Forty-ninth Annual Corn and Sorghum Industry Research Conference, Washington, D.C.Google Scholar
  10. Beavis, W.D. (1998) QTL analyses: power, precision, and accuracy. In: Paterson, A.H. (ed.) Molecular Dissection of Complex Traits. CRC Press, Boca Raton.Google Scholar
  11. Bednarek, P.T., Masojæ, P.,Lewandowska, R. and Myoeków, B. (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. Journal of Applied Genetics 44, 21–33.PubMedGoogle Scholar
  12. Beecher, A., Bettge, A., Smidansky, E. and Grioux, M.J. (2002) Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theoretical and Applied Genetics 105, 870–877.PubMedCrossRefGoogle Scholar
  13. Bonafede, M., Kong, L., Tranquilli, G., Ohm, H. and Dubcovsky, J. (2006) Reduction of a Triticum monococcum chromosomes segment carrying the softness genes Pina and Pinb translocated to bread wheat. Crop Science 47, 821–828.CrossRefGoogle Scholar
  14. Börner, A. and Korzun, V. (1998) A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theoretical and Applied Genetics 97, 1279–1288.CrossRefGoogle Scholar
  15. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America 99, 9328–9333.PubMedCrossRefGoogle Scholar
  16. Bulgarelli, D., Collins, N.C., Tacconi, G., Dellaglio, E., Brueggeman, R., Kleinhofs, A., Stanca, A.M. and Vale, G. (2004) High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theoretical and Applied Genetics 108, 1401–1408.PubMedCrossRefGoogle Scholar
  17. Carlborg, O. and Haley, C.S. (2004) Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics 5, 618–625.Google Scholar
  18. Castiglioni, P., Pozzi, C., Heun, M., Terzi, V., Muller, K.J., Rohde, W. and Salamini, F. (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149, 2039–2056.PubMedGoogle Scholar
  19. Castro, A.J., Chen, X., Corey, A., Filichkina, T., Hayes, P., Mundt, C., Richardson, K., Sandoval-Islas, S. and Vivar, H. (2003) Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley strip rust: Effects of Adult Plant Resistance. Crop Science 43, 2234–2239.CrossRefGoogle Scholar
  20. Cavannagh, C., Morell, M., Mackay, I. and Powell, W. (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology 11, 1–7.CrossRefGoogle Scholar
  21. Chalmers, K.J., Campbell, A.W., Kretschmer, J., Karakousis, A., Henschke, P.H., Pierens, S., Pallotta, M., Cornish, G.B., Shariflou, M.R., Rampling, L.R., McLauchlan, A., Daggard, G., Sharp, P.J., Holton, T.A., Sutherland, M.W., Appels, R. and Langridge, P. (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Australian Journal of Agricultural Research 52, 1089–1119.CrossRefGoogle Scholar
  22. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D. and Gale, M.D. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Applied Genetics 78, 495–504.CrossRefGoogle Scholar
  23. Chartrain, L., Brading, P.A., Widdowson, J.P. and Brown, J.K.M. (2004) Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94, 497–504.PubMedCrossRefGoogle Scholar
  24. Chen, J., Griffey, C.A., Saghai Maroof, M.A., Stromberg, E.L., Biyashev, R.M., Zhao, W., Chappell, M.R., Pridgen, T.H., Dong, Y. and Zeng, Z. (2006) Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant Breeding 125, 99–101.CrossRefGoogle Scholar
  25. Chen, M., Presting, G., et al. (2002) An integrated physical and genetic map of the rice genome. The Plant Cell 14, 537–545.PubMedCrossRefGoogle Scholar
  26. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. and Pang, E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142, 169–196.CrossRefGoogle Scholar
  27. Cordell, J. (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics 11, 2463–2468.PubMedCrossRefGoogle Scholar
  28. Costa, J.M., Corey, A., Hayes, P.M., Jobet, C., Kleinhofs, A., Kopisch-Obusch, A., Kramer, S.F., Kudrna, D., Li, M., Riera-Lizarazu, O., Sato, K., Szucs, P., Toojinda, T., Vales, M.I. and Wolfe, R.I. (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics 103, 415–424.CrossRefGoogle Scholar
  29. De Bustos, A. and Jouve, N. (2002) Phylogenetic relationships of the genus Secale based on the characterisation of the rDNA ITS sequences. Plant Systematics and Evolution 235, 147–154.CrossRefGoogle Scholar
  30. De Givry, S., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. (2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21, 1703–1704.PubMedCrossRefGoogle Scholar
  31. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Liu, C.J. and Gale, M.D. (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theoretical and Applied Genetics 83, 931–939.CrossRefGoogle Scholar
  32. Devos, K.M. and Gale, M.D. (1992) The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics 84, 567–572.CrossRefGoogle Scholar
  33. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X. and Gale, M.D. (1993) Chromosomal Rearrangements in the Rye Genome Relative to That of Wheat. Theoretical and Applied Genetics 85, 673–680.CrossRefGoogle Scholar
  34. Distelfeld, A., Uauy, C., Fahima, T., Dubcovsky, J. (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytologist 169, 753–763.PubMedCrossRefGoogle Scholar
  35. Dodds, K.G., Ball, R., Djorovic, N. and Carson, S.D. (2004) The effect of an imprecise map on interval mapping QTLs. Genetic Research Cambridge 84, 47–55.CrossRefGoogle Scholar
  36. Doerge, R.W., Zeng, Z.-B. and Weir, B.S. (1997) Statistical issues in the search for genes affecting quantitative traits in experimental populations. Statistical Science 12, 195–219.CrossRefGoogle Scholar
  37. Dubcovsky, J. (2004) Marker-assisted selection in public breeding programs: The wheat experience. Crop Science 44, 1895–1898.CrossRefGoogle Scholar
  38. Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. Journal of Heredity 87, 295–307.Google Scholar
  39. Erayman, M., Sandhu, D., Sidhu, D., Dilbirligi, M., Baenziger, P.S. and Gill, K.S. (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research 32, 3546–3565.PubMedCrossRefGoogle Scholar
  40. Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164 311–321.PubMedGoogle Scholar
  41. Faris, J.D. and Gill, B.S. (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45, 706–718.PubMedCrossRefGoogle Scholar
  42. Faris, J.D., Haen, K.M. and Gill, B.S. (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154, 823–835.PubMedGoogle Scholar
  43. Francki, M. and Appels, R. (2007) Comparative genomics and crop improvement. In: Brown, J.R. (ed.), Comparative genomics: basic and applied research. CRC press, Boca Raton, London, New York, pp 321–340.Google Scholar
  44. Fransz, J.P. C., Liharska, J.B., Peeters, A.J., Zabel, P. and de Jong, J.H.(1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. The Plant Journal 9, 421–430.PubMedCrossRefGoogle Scholar
  45. Gill, K.S., Gill, B.S., Endo, T.R. and Mukai, Y. (1993) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134, 1231–1236.PubMedGoogle Scholar
  46. Gill, K.S., Gill, B.S., Endo, T.R. and Boyko, E.V. (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001–1012.PubMedGoogle Scholar
  47. González, J.M., Muniz, L.M. and Jouve, N. (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome 48, 999–1009.PubMedCrossRefGoogle Scholar
  48. Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83, 250–256.CrossRefGoogle Scholar
  49. Gu, K., Tian, D., Yang, F., Wu, L., Sreekala, C., Wang, D., Wang, G.L. and Yin, Z. (2004) High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theoretical and Applied Genetics 108, 800–807.PubMedCrossRefGoogle Scholar
  50. Gupta, P.K., Roy, J.K. and Prasad, M. (2001) Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science 80, 524–535.Google Scholar
  51. Gupta, P.K., Balyan, H.S., Edwards, K.J., Isaac, P., Korzun, V., Roder, M., Gautier, M.-F., Joudrier, P., Schlatter, A.R., Dubcovsky, J., De la Pena, R.C., Khairallah, M., Penner, G., Hayden, M.J., Sharp, P., Keller, B., Wang, R.C.C., Hardouin, J.P., Jack, P. and Leroy, P. (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics 105, 413–422.PubMedCrossRefGoogle Scholar
  52. Hackett, C.A. and Broadfoot, L.B. (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90, 33–38.PubMedCrossRefGoogle Scholar
  53. Hackett, C.A. (2002) Statistical methods for QTL mapping in cereals. Plant Molecular Biology 48, 585–599.PubMedCrossRefGoogle Scholar
  54. Haen, K.M., Lu, H.J., Friesen, T.L. and Faris, J.D. (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Science 44, 951–962.CrossRefGoogle Scholar
  55. Hearnden, P., Eckermann, P.J., McMichael, G.L., Hayden, M.J., Eglinton, J.K. and Chalmers, K.J. (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics 115, 383–391.PubMedCrossRefGoogle Scholar
  56. Hayden, M.J., Stephenson, P., Logojan, A.M., Khatkar, D., Rogers, C., Elsden, J., Koebner, R.M.D., Snape, J.W. and Sharp, P.J. (2006) Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.) Theoretical and Applied Genetics 113, 1271–1281.PubMedCrossRefGoogle Scholar
  57. He, C.F., Sayed-Tabatabaei, B.E., Komatsuda, T. (2004) AFLP targeting of the 1-cM region conferring the vrs1 gene for six-rowed spike in barley, Hordeum vulgare L. Genome 47, 1122–1129.PubMedCrossRefGoogle Scholar
  58. Heun, M., Kennedy, A.E., Anderson, J.A., Lapitan, N.L.V., Sorrells, M.E. and Tanksley, S.D. (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare) Genome 34, 437–447.CrossRefGoogle Scholar
  59. Hori, K., Kobayashi, T., Shimizu, A., Sato, K., Takeda, K. and Kawasaki, S. (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theoretical and Applied Genetics 107, 806–813.PubMedCrossRefGoogle Scholar
  60. Hori, K., Sato, K., Kobayashi, T. and Takeda, K. (2006) QTL analysis of fusarium head blight severity in recombinant inbred population derived from a cross between two-rowed barley varieties. Breeding Science 56, 25–30.CrossRefGoogle Scholar
  61. Horsley, R.D., Schmierer, D., Maier, C., Kudrna, D., Urrea, C.A., Steffenson, B.J., Schwarz, P.B., Franckowiak, J.D., Green, M.J., Zhang, B. and Kleinhofs, A. (2006) Identification of QTLs associated with Fusarium head blight resistnce in barley accession Clho 4196. Crop Science 46, 145–156.CrossRefGoogle Scholar
  62. Hossain, K.G., Riera-Lizarazu, O., Kalavacharla, V., Vales, M.I., Maan, S.S. and Kianian, S.F. (2004) Radiation hybrid mapping of the species cytoplasm-specific (scs) gene in wheat. Genetics 168, 415–423.PubMedCrossRefGoogle Scholar
  63. Huang, X., Zeller, F.J., Hsam, S.L.K., Wenzel, G. and Mohler, V. (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43, 298–305.PubMedCrossRefGoogle Scholar
  64. Islam, A.K.R.M., Shepherd, K.W. and Sparrow, D.H.B. (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46, 161–174.CrossRefGoogle Scholar
  65. Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A. (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, e25.PubMedCrossRefGoogle Scholar
  66. Jafary, H., Szabo, L.J. and Niks, R.E. (2006a) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with overlapping specificities. Molecular Plant-Microbe Interactions 19, 1270–1279.Google Scholar
  67. Jafary, H., Albertazi, G. and Niks, R.E. (2006b) Diversity of loci carrying genes for resistance of barley to heterologous rust species. In: Gullner, G. (ed.), Proceedings of the non-specific and specific innate and acquired plant resistance symposium, 31 August–3 September 2006, Budapest, Hungary. Plant Protection Institute of the Hungarian Academy of Sciences.Google Scholar
  68. Jansen, R.C. (1993) Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.PubMedGoogle Scholar
  69. Kalavacharia, V., Hossain, K., Gu, Y., Riera-Lizarazu, O., Vales, M.I., Bhamidimarri, S., Gonzales-Hernandez, J.L., Maan, S.S., Kianian, S. (2006) High resolution radiation hybrid map of wheat chromosome 1D. Genetics 106, 1089–1099.CrossRefGoogle Scholar
  70. Karkousis, A., Barr, A.R., Kretschmer, J.M., Manning, S., Jefferies, S.P., Chalmers, K.J., Islam, A.K.M. and Langridge, P. (2003) Mapping and QTL analysis of the barley population Clipper × Sahara. Australian Journal of Agricultural Research 54, 1137–1140.CrossRefGoogle Scholar
  71. Kearsey, M.J. and Farquhar, A.G.L. (1998) QTL analysis in plants; where are we now? Heredity 80, 137–142.PubMedCrossRefGoogle Scholar
  72. Kilian, A., Huttner, E., Wenzl, P., Jaccoud, D., Carling, J., Caig, V., Evers, M., Heller-Uszynska, K., Cayla, C., Patarapuwadol, S., Xia, L., Yang, S. and Thomson, B. (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa, R., Phillips, R.L. and Gale, M. (eds.), Proceedings of the International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy. Avenue Media, pp. 443–461.Google Scholar
  73. Kleinhofs, A., Kilian, A., Saghai, M.M., Byashev, R.M., Hayes, P.M., Chen, F., Lapitan, N., Fenwick, A., Balkes, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kurdna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrels, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skadsen, R. and Steffenson, B.J. (1993) A molecular isozyme and morphological map of barley (Hordeum vulgare) genome. Theoretical and Applied Genetics 86, 705–712.CrossRefGoogle Scholar
  74. Korzun, V., Röder, M.S., Wendehake, K., Pasqualone, A., Lotti, C., Ganal, M.W. and Blanco, A. (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theoretical and Applied Genetics 98, 1202–1207.CrossRefGoogle Scholar
  75. Korzun, V., Malyshev, S., Voylokov, A.V. and Borner, A. (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theoretical and Applied Genetics 102, 709–717.CrossRefGoogle Scholar
  76. Kumar, L.S. (1999) DNA markers in plant improvement: An overview. Biotechnology Advances 17, 143–182.PubMedCrossRefGoogle Scholar
  77. Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.PubMedGoogle Scholar
  78. Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–756.PubMedGoogle Scholar
  79. Lander, E.S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.PubMedGoogle Scholar
  80. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.PubMedCrossRefGoogle Scholar
  81. Langridge, P., Lagudah, E.S., Holton, T.A., Appels, R., Sharp, P.J. and Chalmers, K.J. (2001) Trends in genetic and genome analyses in wheat: a review. Australian Journal of Agricultural Research 52, 1043–1077.CrossRefGoogle Scholar
  82. La Rota, M. and Sorrells, M.E. (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Functional and Integrative Genomics 4, 34–46.PubMedCrossRefGoogle Scholar
  83. Lehmensiek, A., Eckermann, P.J., Verbyla, A.P., Appels, R., Sutherland, M.W. and Daggard, G. (2005) Curation of wheat maps to improve map accuracy and QTL detection. Australian Journal of Agricultural Research 56, 1347–1354.CrossRefGoogle Scholar
  84. Lehmensiek, A., Sutherland, M.W. and McNamara, R.B. (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theoretical and Applied Genetics 117, 721–728.Google Scholar
  85. Liao, C.Y., Wu, P., Hu, B. and Yi, K.K. (2001) Effects of genetic background and environment of QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theoretical and Applied Genetics 103, 104–111.CrossRefGoogle Scholar
  86. Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Lyon, E. and Wittwer, C. (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical Chemistry 50, 1156–1164.PubMedCrossRefGoogle Scholar
  87. Li, D., Barclay, I., Jose, K., Stefanova, K. and Appels, R. (2008) A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection. Molecular Breeding, DOI 10.1007/s11032-008-9168-4.Google Scholar
  88. Li, H., Zhou, M., Mendham, N.J., Kilian, A., Wenzl, P., Huttner, E. and Vaillancourt, R.E. (2005) Mapping and QTL analysis of the barley population TX9428 × Franklin. In Proceedings of the 12th Australian Barley Technical Symposium: 11–14 Sept Hobart, Australia.Google Scholar
  89. Li, H., Vaillancourt, R.E., Zhou, M., Mendham, N.J., Wenzl, P., Huttner, E. and Kilian, A. (2006) Large-scale segregation distortion in barley revealed by a gnetic map based on DArT, AFLP and SSR markers. In Proceeding of the 13th Australasian Plant Breeding Conference: 18–21 April Christchurch, New Zealand.Google Scholar
  90. Ling, H.Q., Zhu, Y. and Keller, B. (2003) High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theoretical and Applied Genetics 106, 875–882.PubMedGoogle Scholar
  91. Liu, Z.H., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B. and Faris, J.D. (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theoretical and Applied Genetics 111, 782–794.PubMedCrossRefGoogle Scholar
  92. Lu, H.J., Fellers, J.P., Friesen, T.L., Meinhardt, S.W. and Faris, J.D. (2006) Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theoretical and Applied Genetics 112, 1132–1142.PubMedCrossRefGoogle Scholar
  93. Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland.Google Scholar
  94. Ma, W., Appels, R., Bekes, F., Larroque, O.R., Morell, M.K. and Gale, K.R. (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theoretical and Applied Genetics 111, 410–422.PubMedCrossRefGoogle Scholar
  95. Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J. and Ellis, J.G. (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics 112, 41–50.PubMedCrossRefGoogle Scholar
  96. Manly, K.F., Cudmore, R.H.J. and Meer, J.M. (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12, 930–932.PubMedCrossRefGoogle Scholar
  97. Mano, Y., Kawasaki, S., Takaiwa, F. and Komatsuda, T. (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system Genome 44, 284–292.Google Scholar
  98. Marcel, T.C., Varshney, R.K., Barbieri, M., Jafary, H., de Kock, M.J.D., Graner, A. and Niks, R.E. (2007) A high-density consenesus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114, 487–500.PubMedCrossRefGoogle Scholar
  99. Martin, A., Rubiales, D. and Cabrera, A. (1999) A Fertile Amphiploid between a Wild Barley (Hordeum chilense) and Crested Wheatgrass (Agropyron cristatum). International Journal of Plant Sciences 160, 783–786.CrossRefGoogle Scholar
  100. Masojć, P., Myśków, B. and Milczarski, P. (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theoretical and Applied Genetics 102, 1273–1279.CrossRefGoogle Scholar
  101. McCartney, C.A., Somers, D.J., Humphreys, D.G., Lukow, O., Ames, N., Noll, J., Cloutier, S. and McCallum, B.D. (2005) Mapping quantitative trait loci controlling agromomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48, 870–883.PubMedCrossRefGoogle Scholar
  102. McFadden, H.G., Lehmensiek, A. and Lagudah, E.S. (2006) Resistance gene analogues of wheat: molecular genetic analysis of ESTs. Theoretical and Applied Genetics 113, 987–1002.PubMedCrossRefGoogle Scholar
  103. Melchinger, A.E., Utz, H.F. and Schon, C.C. (1998) Quantitative trait locus mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias of QTL effects. Genetics 149, 383–403.PubMedGoogle Scholar
  104. Mesfin, A., Smith, K.P., Dill-Macky, R., Evans, C.K., Waugh, R., Gustus, C.D., Muehlbauer, G.J. (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Science 43, 307–318.CrossRefGoogle Scholar
  105. Mester, D., Ronin, Y., Minkov, D., Nevo, E. and Korol, A. (2003a) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics 165, 2269–2282.Google Scholar
  106. Mester, D.I., Ronin, Y.I., Hu, Y., Nevo, E. and Korol, A. (2003b) Efficient multipoint mapping: Making use of dominant repulsion-phase markers. Theoretical and Applied Genetics 107, 1102–1112.Google Scholar
  107. Michelmore, R.W., Paran, I. and Kesseli, R. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88, 9829–9832.CrossRefGoogle Scholar
  108. Mingeot, D. and Jacquemin, J.M. (1999) Mapping of RFLP probes characterized for their polymorphism on wheat. Theoretical and Applied Genetics 98, 1132–1137.CrossRefGoogle Scholar
  109. Montgomery, J., Wittwer, C.T., Palais, R. and Luming, Z. (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nature 2, 59–66.Google Scholar
  110. Miftahudin, T., Chikmawati, T., Ross, K., Scoles, G.J. and Gustafson, J.P. (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theoretical and Applied Genetics 110, 906–913.PubMedCrossRefGoogle Scholar
  111. Nachit, M.M., Elouafi, I., Pagnotta, M.A., El Saleh, A., Iacono, E., Labhilili, M., Asbati, A., Azrak, M., Hazzam, H., Benscher, D., Khairallah, M., Ribaut, J.M., Tanzarella, O.A., Porceddu, E. and Sorrells, M.E. (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theoretical and Applied Genetics 102, 177–186.CrossRefGoogle Scholar
  112. Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., Hai Lu, Y., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D. and Anderson, J.A. (1995) Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141, 721–731.PubMedGoogle Scholar
  113. Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., Sourdille, P., Abderhalden, O., Keller, B. and Schechermayr, G. (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics 107, 1235–1242.PubMedCrossRefGoogle Scholar
  114. Parker, G.D., Chalmers, K.J., Rathjen, A.J. and Langridge, P. (1999) Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Molecular Breeding 5, 561–568.CrossRefGoogle Scholar
  115. Peleman, J.D., Wye, C., Zethof, J., Sorensen, A.P., Verbakel, H., van Oeveren, J., Gerats, T. and van der Voort, J.R. (2005) Quantitative trait locus (QTL) isogenic recombinant analysis: A method for high-resolution mapping of QTL within a single population. Genetics 171, 1341–1352.PubMedCrossRefGoogle Scholar
  116. Pellio, B., Streng, S., Bauer, E., Stein, N., Perovic, D., Schiemann, A., Friedt, W., Ordon, F. and Graner, A. (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp vulgare L.). Theoretical and Applied Genetics 110, 283–293.PubMedCrossRefGoogle Scholar
  117. Pena, R.J. (2002) Wheat for bread and other foods. In: Curtis, B.C., Rajaram, S. and Gomez Macpherson, H. (eds.), Bread Wheat: Improvement and Production. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  118. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flinthan, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin responses modulators. Nature 400, 256–261.PubMedCrossRefGoogle Scholar
  119. Prasad, M., Kumar, N., Kulwal, P.L., Roder, M.S., Balyan, H.S., Dhaliwal, H.S. and Gupta, P.K. (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theoretical and Applied Genetics 106, 659–667.PubMedGoogle Scholar
  120. Qi, L., Echalier, B., Friebe, B. and Gill, B.S. (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Functional and Integrative Genomics 3, 39–55.PubMedGoogle Scholar
  121. Qi, X., Stam, P. and Lindhout, P. (1998) Use of locus-specific AFLP markers to construct a high density-molecular map in barley. Theoretical and Applied Genetics 96, 376–384.CrossRefGoogle Scholar
  122. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusić, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D.Z., Farmer, P., Saker, L., Clarkson, D.T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M.C., Hollington, P.A., Aragués, R., Royo, A. and Dodig, D. (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics 110, 865–880.PubMedCrossRefGoogle Scholar
  123. Raman, H., Platz, G.J., Chalmers, K.J., Raman, R., Read, B.J., Barr, A.R. and Moody, D.B. (2003) Mapping of genomic regions associated with net form of net blotch resistance in barley. Australian Journal of Agricultural Research 54, 1359–1367.CrossRefGoogle Scholar
  124. Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. (2000) A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005.PubMedGoogle Scholar
  125. Röder, M.S., Korzun, V., Wendehake, J., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.PubMedGoogle Scholar
  126. Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J.T., Wanamaker, S.I., Walia, H., Rodriguez, E.M., Hedley, P.E., Liu, H., Morris, J., Close, T.J., Marshall, D.F. and Waugh, R. (2005a) Genome-wide SNP discovery and linkage analysis in barley based on genes resposive to abiotic stress. Molecular and General Genomics 274, 515–527.Google Scholar
  127. Rostoks, N., Borevitz, J.O., Hedley, P.E., Russell, J., Mudie, S., Morris, J., Cardle, L., Marshall, D.F. and Waugh, R. (2005b) Single-feature polymorphism discovery in the barley transcriptome. Genome Biology 6.Google Scholar
  128. Sears, E.R. (1954) The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin, pp. 1–59.Google Scholar
  129. Sears, E.R. and Sears, L.M.S. (1978) The telocentric chromosomes of common wheat. Paper presented at the Proceedings of the 5th International Wheat Genetic Symposium, New Dehli.Google Scholar
  130. Shang, H.-Y., Wei, Y.-M., Wang, X.-R. and Zheng, Y.-L. (2006) Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genetics and Molecular Biology 29, 685–691.CrossRefGoogle Scholar
  131. Schnurbusch, T., Bossolini, E., Messmer, M. and Keller, B. (2004) Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology 94, 1036–1041.PubMedCrossRefGoogle Scholar
  132. Somers, D.J., Fedak, G. and Savard, M. (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46, 555–564PubMedCrossRefGoogle Scholar
  133. Somers, D.J., Isaac, P. and Edwards, K. (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109, 1105–1114.PubMedCrossRefGoogle Scholar
  134. Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R. and Cregan, P.B. (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics 110, 550–560.PubMedCrossRefGoogle Scholar
  135. Sourdille, P., Cadalen, T., Guyomarc’h, H., Snape, J.W., Perretant, M.R., Charmet, G., Boeuf, C., Bernard, S. and Bernard, M. (2003) An update of the Courtot-Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics 106, 530–538.PubMedGoogle Scholar
  136. Spielmeyer, W., Singh, R.P., McFadden, H., Wellings, C.R., Huerta-Espino, J., Kong, X., Appels, R. and Lagudah, E.S. (2008) Fine scale genetic and physical mapping using deletion mutants of Lr34/Yr18: A disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, doi: 10.1007/s00122-007-0684-0.Google Scholar
  137. Stam, P. (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. The Plant Journal 3, 739–744.CrossRefGoogle Scholar
  138. Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences of the United States of America 97, 13436–13441.PubMedCrossRefGoogle Scholar
  139. Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R., Perovic, D., Grosse, I. and Graner, A. (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theoretical and Applied Genetics 114, 823–839.PubMedCrossRefGoogle Scholar
  140. Sutton, T., Baumann, U., Hayes, J., Collins, N.C., Shi, B.J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M. and Langridge, P. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449.PubMedCrossRefGoogle Scholar
  141. Szakacs, E. and Molnar-Lang, M. (2007) Development and molecular cytogenetic identification of new winter wheat-winter barley disomic addition lines. Genome 50, 43–50.PubMedCrossRefGoogle Scholar
  142. Thangavelu, M., James, A.B., Bankier, A., Bryan, G.J., Dear, P.H. and Waugh, R. (2003) HAPPY mapping in a plant genome: reconstruction and analysis of a high resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4. Plant Biotechnology Journal 1, 23–31.PubMedCrossRefGoogle Scholar
  143. Taketa, S., Awayama, T., Amano, S., Sakurai, Y. and Ichii, M. (2006) High-resolution mapping of the nud locus controlling the naked caryopsis in barley. Plant Breeding 125, 337–342.CrossRefGoogle Scholar
  144. Tanksley, S.D. (1993) Mapping polygenes. Annual Review of Genetics 27, 205–233.PubMedCrossRefGoogle Scholar
  145. Teuscher, F. and Broman, K.W. (2007) Haplotype probabilities for multiple strain recombineation inbred lines. Genetics 175, 1267–1274.PubMedCrossRefGoogle Scholar
  146. Torada, A., Koike, M., Mochida, K. and Ogihara, Y. (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theoretical and Applied Genetics 112,1042–1051.PubMedCrossRefGoogle Scholar
  147. United States Department of Agriculture (2006) Wheat: World Markets and Trade <>.
  148. Van Os, H., Andrzejewski, S., Bakker, E., Barrena, I., Bryan, G.J., Caromel, B., Ghareeb, B., Isidore, E., de Jong, W., van Koert, P., Lefebvre, V., Milbourne, D., Ritter, E., Rouppe van der Voort, J.N.A.M., Rousselle-Bourgeois, F., van Vliet, J., Waugh, R., Visser, R.G.F., Bakker, J. and Van Eck, H.J. (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genome wide physical map. Genetics 173, 1075–1087.PubMedCrossRefGoogle Scholar
  149. Van Os, H., Stam, P., Visser, R.G.F. and Van Eck, H.J. (2005a) RECORD: a novel method for ordering loci on a genetic linkage map. Theoretical and Applied Genetics 112, 30–40.Google Scholar
  150. Van Os, H., Stam, P., Visser, R.G.F. and Van Eck, H. (2005b) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theoretical and Applied Genetics 112, 187–194.Google Scholar
  151. Varshney, R.K., Grosse, I., Hähnel, U., Siefken, R., Prasad, M., Stein, N., Langridge, P., Altschmied, L. and Graner, A. (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theoretical and Applied Genetics 113, 239–250.PubMedCrossRefGoogle Scholar
  152. Varshney, R.K., Marcel, T.C., Ramsay, L., Russell, J., Röder, M.S., Stein, N., Waugh, R., Langridge, P., Niks, R.E. and Graner, A. (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114, 1091–1103.PubMedCrossRefGoogle Scholar
  153. Verbyla, A.P., Cullis, B.R. and Thompson, R. (2007) The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics 116, 95–111.PubMedCrossRefGoogle Scholar
  154. Vos, P., Hogers, R., Beleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.PubMedCrossRefGoogle Scholar
  155. Wang, J., Raman, H., Zhou, M., Ryan, P.R., Delhaize, E., Hebb, D.M., Coombes, N. and Mendham, N. (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.PubMedCrossRefGoogle Scholar
  156. Wardrop, J., Snape, J., Powell, W. and Machray, G.C. (2002) Constructing plant radiation hybrid panels. The Plant Journal 31, 223–228.PubMedCrossRefGoogle Scholar
  157. Wardrop, J., Fuller, J., Powell, W. and Machray, G.C. (2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequenced tags. Theoretical and Applied Genetics 108, 343–348.PubMedCrossRefGoogle Scholar
  158. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A. (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America 101, 9915–9920.PubMedCrossRefGoogle Scholar
  159. Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., Ovesna, J., Cakir, M., Poulsen, D., Wang, J., Raman, R., Smith, K.P., Meuhlbauer, G.J., Chalmers, K.J., Kleinhofs, A., Huttner, E. and Kilian, A. (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7, 206–227.PubMedCrossRefGoogle Scholar
  160. Wenzl, P., Raman, H., Wang, J., Zhou, M., Huttner, E., Kilian, A. (2007a) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8, 196–206.Google Scholar
  161. Wenzl, P., Catizone, I., Thomson, B., Huttner, E., Mantovani, P., Maccaferri, M., Corneti, S., De Ambrogio, E., Sanguineti, M.C., Tuberosa, R. and Kilian, A. (2007b) A DArT platform for high-throughput profiling of durum wheat. Plant and Animal Genomes XIV Conference, 13–17 Jan, San Diego, CA, USA.Google Scholar
  162. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.PubMedCrossRefGoogle Scholar
  163. Willsmore, K.L., Eckermann, P., Varshney, R.K., Graner, A., Langridge, P., Pallotta, M., Cheong, J. and Williams, K.J. (2006) New eSSR and gSSR markers added to Australian barley maps. Australian Journal of Agricultural Research 57, 953–959.CrossRefGoogle Scholar
  164. Wu, J., Jenkins, J., Zhu, J., McCarty, J. and Watson, C. (2003) Monte Carlo simulations on marker grouping and ordering. Theoretical and Applied Genetics 107, 568–573.PubMedCrossRefGoogle Scholar
  165. Xing, Y.Z., Tan, Y.F., Hua, J.P., Sun, X.L. and Xu, C.G. (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics 105, 248–257.PubMedCrossRefGoogle Scholar
  166. Yamamoto, M. and Mukai, Y. (2005) High-resolution physical mapping of the secalin-1 locus of rye on extended DNA fibers. Cytogenetic and Genome Research 109, 79–82.PubMedCrossRefGoogle Scholar
  167. Yandell, B.S., Mehta, T., Banerjee, S., Shriner, D., Venkataraman, R., Moon, J.Y., Neely, W.W., Wu, H. von Smith, R. and Yi, N. (2007) R/qtlbim: QTL with Bayesian Interval Mapping in experimental crosses. Bioinformatics 23, 641–643.PubMedCrossRefGoogle Scholar
  168. Yang, H.Y., You, A.Q., Yang, Z.F., Zhang, F., He, R.F., Zhu, L.L. and He, G. (2004) High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics 110, 182–191.PubMedCrossRefGoogle Scholar
  169. Yap, I., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S. and McCouch, S. (2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165, 2235–2247.PubMedGoogle Scholar
  170. Yokota, H., Johnson, F., Lu, H., Robinson, M., Belu, A.M., Garrison, M.D., Ratner, B.D., Trask, B.J., Miller, D.L. (1997) A new method for straightening DNA molecules for optical retriction mapping. Nucleic Acids Research 25, 1064–1070.PubMedCrossRefGoogle Scholar
  171. Young, N.D. (1996) QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology 34, 479–501.PubMedCrossRefGoogle Scholar
  172. Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q. and Saghai Maroof, M.A. (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America 94, 9226–9231.PubMedCrossRefGoogle Scholar
  173. Zeng, Z.-B. (1994) Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.PubMedGoogle Scholar
  174. Zhou, S., Bechner, M.C., Place, M., Churas, C.P., Pape, L., Leong, S.A., Runnheim, R., Forrest, D.K., Goldstein, S., Livny, M. and Schwartz, D.C. (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8, 278–296.PubMedCrossRefGoogle Scholar
  175. Zhuang, J.-Y., Fan, Y.-Y., Rao, Z.-M., Wu, J.-L., Xia, Y.-W. and Zheng, K.-L. (2002) Analysis of additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics 105, 1137–1145.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anke Lehmensiek
    • 1
  • William Bovill
    • 2
    • 3
  • Peter Wenzl
    • 4
  • Peter Langridge
    • 5
  • Rudi Appels
    • 6
  1. 1.Centre for Systems BiologyUniversity of Southern QueenslandAustralia
  2. 2.Centre for Systems BiologyUniversity of Southern QueenslandAustralia
  3. 3.School of Food, Agriculture and WineUniversity of AdelaideAustralia
  4. 4.Triticarte Pty Ltd and Diversity Arrays Technology Pty LtdAustralia
  5. 5.Australian Centre for Plant Functional GenomicsUniversity of AdelaideAustralia
  6. 6.Centre for Comparative Genomics, Department of AgricultureMurdoch UniversityAustralia

Personalised recommendations