Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum

  • Andreas Houben
  • Richard Pickering
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Cytogenetic analyses have been widely applied for characterising the barley (Hordeum vulgare) genome under the microscope. The methods and results have been extensively reviewed and will only be outlined in this chapter. We focus instead on the applications of cytogenetics and genomics relating to physically mapping the barley genome and for determining species relationships in the genus Hordeum through the meiotic analysis of wide hybrids. The application of cytogenetical tools in breeding programmes will be described. Finally we summarise our knowledge of the cellular processes involved in the generation of haploid barley via uniparental chromosome elimination in H. vulgare × H. bulbosum hybrid embryos.


Leaf Rust Bacterial Artificial Chromosome Clone Chiasma Frequency Barley Chromosome Barley Yellow Dwarf Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors have been supported by the DFG, Germany (DFG HO 1779/9-1) and under an EU Marie Curie Research Fellowship (219313). R Pickering also thanks the Foundation for Research, Science and Technology (New Zealand) for financial support and his colleagues in Plant & Food Research, especially Paul Johnston, Viji Meiyalaghan and Stan Ebdon. 


  1. Ananiev, E. (1992) Nuclear genome structure and organization. In: P.R. Shewry (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford, UK, pp. 133–150.Google Scholar
  2. Ashida, T., Nasuda, S., Sato, K. and Endo, T.R. (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet. Syst. 82, 123–133.PubMedCrossRefGoogle Scholar
  3. Banks, P.M., Larkin, P.J., Bariana, H.S., Lagudah, E.S., Appels, R., Waterhouse, P.M., Brettell, R.I.S., Chen, X., Xu, H.J., Xin, Z.Y., Qian, Y.T., Zhou, X.M., Cheng, Z.M. and Zhou, G.H. (1995) The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38, 395–405PubMedCrossRefGoogle Scholar
  4. Barakat, A., Carels, N. and Bernardi, G. (1997) The distribution of genes in the genomes of Gramineae. Proc. Natl. Acad. Sci. USA 94, 6857–6861.CrossRefGoogle Scholar
  5. Baum, B.R. and Bailey, G. (1988) A taxonomic investigation of Hordeum arizonicum (Poaceae: Triticeae) with reference to related species. Can. J. Bot. 66, 1848–1855.CrossRefGoogle Scholar
  6. Bayliss, M.W. and Riley, R. (1972) An analysis of temperature-dependent asynapsis in Triticum aestivum. Genet. Res. Camb. 20, 193–200.CrossRefGoogle Scholar
  7. Becker, J. and Heun, M. (1995) Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome 38, 991–998.PubMedCrossRefGoogle Scholar
  8. Bedbrook, J.R., Jones, J., Odell, M., Thompson, R.D. and Flavell, R.B. (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.PubMedCrossRefGoogle Scholar
  9. Belostotsky, D.A. and Ananiev, E.V. (1990) Characterization of relic DNA from barley genome. Theor. Appl. Genet. 80, 374–380.CrossRefGoogle Scholar
  10. Bennett, M.D., Finch, R.A. and Barclay, I.R. (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54, 175–200.CrossRefGoogle Scholar
  11. Bothmer, R. von, Flink, J., Jacobsen, N., Kotimäki, M. and Landström, T. (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99, 219–244.CrossRefGoogle Scholar
  12. Bothmer, R. von, Flink, J. and Landström, T. (1987) Meiosis in Hordeum interspecific hybrids. II. Triploid hybrids. Evol. Trend. Plant. 1, 41–50.Google Scholar
  13. Bothmer, R. von, Jacobsen, N., Baden, C., Jørgensen, R.B. and Linde-Laursen, I. (1995) An ecogeographical study of the genus Hordeum. (1995) 2nd edition. Systematic and Ecogeographical Studies on Crop Genepools 7. IPGRI, Rome, Italy.Google Scholar
  14. Brandes, A., Röder, M.S. and Ganal, M.W. (1995) Barley telomeres are associated with two different types of satellite DNA sequences. Chromosome Res. 3, 315–320.PubMedCrossRefGoogle Scholar
  15. Brown, S.E., Stephens, J.L., Lapitan, N.L.V. and Knudson, D.L. (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42, 274–281.PubMedGoogle Scholar
  16. Busch, W., Martin, R., Herrmann, R.G. and Hohmann, U. (1995) Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.). Genome 38, 1082–1090.PubMedCrossRefGoogle Scholar
  17. Busch, W., Herrmann, R.G., Houben, A. and Martin, R. (1996) Efficient preparation of plant metaphase spreads. Plant Mol. Biol. Rep. 14, 149–155.CrossRefGoogle Scholar
  18. Cabrera, A., Friebe, B., Jiang, J. and Gill, B.S. (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38, 435–442.PubMedCrossRefGoogle Scholar
  19. Cho, S.H., Garvin, D.F. and Muehlbauer, G.J. (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172, 1277–1285.PubMedCrossRefGoogle Scholar
  20. Costa, J.M. and Singh, R.J. (2006) Chromosome mapping in barley (Hordeum vulgare L.). In: R.J. Singh and P.P. Jauhar (Eds.), Genetic Resources, Chromosome Engineering, and Crop Improvement, Volume 2, Cereals, CRC Press, Boca Raton, pp. 257–280.Google Scholar
  21. Cuadrado, A. and Jouve, N. (2007) The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res. 15, 711–720.PubMedCrossRefGoogle Scholar
  22. Dahleen, L.S. (1999) Tissue culture increases meiotic pairing of regenerants from barley × Canada wild rye hybrids. J. Hered. 90, 265–269.CrossRefGoogle Scholar
  23. de Bustos, A., Cuadrado, A., Soler, C. and Jouve, N. (1996) Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Res. 4, 491–499.PubMedCrossRefGoogle Scholar
  24. Devaux, P. and Pickering, R. (2005) Haploids in the Improvement of Poaceae. In: C.E. Palmer, W.A. Keller and K.J. Kasha (Eds.), Haploids in Crop Improvement II, Series: Biotechnology in Agriculture and Forestry, Vol 56. Springer, Berlin, Heidelberg, pp. 215–242.CrossRefGoogle Scholar
  25. Dolezel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M., Nardi, L. and Obermyer, R. (1998) Plant genome size estimation of flow cytometry: inter-laboratory comparison. Ann. Bot. (Lond) 82 (Supp. A), 17–26.CrossRefGoogle Scholar
  26. Endo, T.R. (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79, 366–370.Google Scholar
  27. Fedak, G. (1982) Effect of cultivar combination on meiosis in barley-wheat hybrids. Can. J. Genet. Cytol. 24, 575–582.Google Scholar
  28. Fernandez, J.A. and Jouve, N. (1988) The addition of Hordeum chilense chromosomes to Triticum turgidum conv. durum. Biochemical, karyological and morphological characterization. Euphytica 37, 247–259.Google Scholar
  29. Finch, R.A. and Bennett, M.D. (1982) The mechanism of somatic chromosome elimination in Hordeum. In: P.E. Brandham and M.D. Bennett (Eds.), Kew Chromosome conference II. London, pp. 146–153.Google Scholar
  30. Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458.CrossRefGoogle Scholar
  31. Fukui, K., Kamisugi, Y. and Sakai, F. (1994) Physical mapping of 5S rDNA loci by direct cloned biotinylated probes in barley chromosomes. Genome 37, 105–111.PubMedCrossRefGoogle Scholar
  32. Fukuyama, T. and Hosoya, H. (1983) Genetic control and mechanism of chromosome elimination in the hybrids between Hordeum bulbosum (4×) and Hordeum vulgare (4×). Jpn. J. Genet. 58, 241–250.CrossRefGoogle Scholar
  33. Gerlach, W.L. and Bedbrook, J.R. (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885.PubMedCrossRefGoogle Scholar
  34. Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Bruss, C., Kumlehn, J., Matzk, F. and Houben, A. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17, 2431–2438.PubMedCrossRefGoogle Scholar
  35. Gernand, D., Rutten, T., Pickering, R. and Houben, A. (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet. Genome Res. 114, 169–174.PubMedCrossRefGoogle Scholar
  36. Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.CrossRefGoogle Scholar
  37. Gupta, P.K. and Fedak, G. (1985a) Genetic control of meiotic chromosome pairing in polyploids in the genus Hordeum. Can. J. Gen. Cyt. 27, 515–530.Google Scholar
  38. Gupta, P.K. and Fedak, G. (1985b) Meiosis in seven intergeneric hybrids between Hordeum and Secale. Z. Pflanzenzüchtg. 95, 262–273.Google Scholar
  39. Harlan, J.R. and de Wet, J.M.J. (1971) Toward a rational classification of cultivated plants. Taxon 20, 509–517.CrossRefGoogle Scholar
  40. Hart, G.E., Islam, A.K.M.R. and Shepherd, K.W. (1980) Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet. Res. Camb. 311–325.Google Scholar
  41. Heddle, J.A. and Carrano, A.V. (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma-irradation: evidence that miconuclei arise from acentric chromsomal fragments. Mutat. Res. 44, 63–69.PubMedGoogle Scholar
  42. Ho, K.M. and Kasha, K.J. (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81, 263–275.PubMedGoogle Scholar
  43. Houben, A., Schroeder-Reiter, E., Nagaki, K., Nasuda, S., Wanner, G., Murata, M. and Endo, T.R. (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116, 275–283.PubMedCrossRefGoogle Scholar
  44. Hudakova, S., Michalek, W., Presting, G.G., ten Hoopen, R., dos Santos, K., Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucleic Acids Res. 29, 5029–5035.PubMedCrossRefGoogle Scholar
  45. Hudakova, S., Künzel, G., Endo, T.R. and Schubert, I. (2002) Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions. Cytogenet. Genome Res. 98, 101–107.PubMedCrossRefGoogle Scholar
  46. Islam, A.K.M.R., Shepherd, K.W. and Sparrow, D.H.B. (1981) Isolation and characterization of euplasmic wheat-barley addition lines. Heredity 46, 161–174.CrossRefGoogle Scholar
  47. Islam, A.K.M.R. (1980) Identification of wheat-barley addition lines with N-banding of chromosomes. Chromosoma 76, 365–373.CrossRefGoogle Scholar
  48. Islam, A.K.M.R. (1983) Ditelosomic additions of barley chromosomes to wheat. In: S. Sakamoto (Ed.), Proc 6th Int. Wheat Genetics Symp. Kyoto University Press, Kyoto, Japan, pp. 233–238.Google Scholar
  49. Islam, A.K.M.R. and Shepherd, K.W. (1992a) Substituting ability of individual barley chromosomes for wheat chromosomes. Plant. Breed. 109, 141–150.Google Scholar
  50. Islam, A.K.M.R. and Shepherd, K.W. (1992b) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. Theor. Appl. Genet. 83, 489–494.Google Scholar
  51. Islam, A.K.M.R. and Shepherd, K.W. (2000) Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica 111, 145–149.CrossRefGoogle Scholar
  52. Jensen, J. and Linde-Laursen, I. (1992) Statistical evaluation of length measurements on barley chromosomes with a proposal for a new nomenclature for symbols and positions of cytological markers. Hereditas 117, 51–59.CrossRefGoogle Scholar
  53. Johnston, P.A. and Pickering, R. (2002) PCR detection of Hordeum bulbosum introgressions in an H. vulgare background using a retrotransposon-like sequence. Theor. Appl. Genet. 104, 720–726.PubMedCrossRefGoogle Scholar
  54. Jørgensen, R.B. and Andersen, B. (1989) Karyotype analysis of regenerated plants from callus cultures of interspecific hybrids of cultivated barley (Hordeum vulgare L.). Theor. Appl. Gen. 77, 343–351.CrossRefGoogle Scholar
  55. Kasha, K.J. and Kao, K.N. (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225, 874–876.PubMedCrossRefGoogle Scholar
  56. Kasha, K.J. and Sadasivaiah, R.S. (1971) Genome relationships between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35, 264–287.CrossRefGoogle Scholar
  57. Kato, A., Albert, P., Vega, J. and Birchler, J. (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78.PubMedCrossRefGoogle Scholar
  58. Kim, N.S., Armstrong, K.C., Fedak, G., Ho, K. and Park, N.I. (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45, 165–174.PubMedCrossRefGoogle Scholar
  59. King, J., Armstead, I.P., Donnison, I.S., Harper, J.A., Roberts, L.A., Thomas, H., Ougham, H., Thomas, A., Huang, L. and King, I.P. (2007) Introgression mapping in grasses. Chromosome Res. 15, 105–113.PubMedCrossRefGoogle Scholar
  60. Kleinhofs, A., Kilian, A., Maroof, M.A.S., Biyashev, R.M., Hayes, P., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skadsen, R. and Steffenson, B.J. (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86, 705–712.CrossRefGoogle Scholar
  61. Koba, T., Handa, T. and Shimada, T. (1991) Efficient production of wheat-barley hybrids and preferential elimination of barley chromosomes. Theor. Appl. Genet. 81, 285–292.CrossRefGoogle Scholar
  62. Kopyto, R., Crane, C.F. and Sleper, D.A. (1989) Effect of temperature on meiosis and fertility in Festuca mairei × Festuca arundinacea var. glaucescens. Genome 32, 708–718.CrossRefGoogle Scholar
  63. Kumar, A. and Bennetzen, J.L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.PubMedCrossRefGoogle Scholar
  64. Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.PubMedGoogle Scholar
  65. Künzel, G. and Waugh, R. (2002) Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor. Appl. Genet. 105, 660–665.PubMedCrossRefGoogle Scholar
  66. Langdon, T., Seago, C., Mende, M., Leggett, M., Thomas, H., Forster, J.W., Jones, R.N. and Jenkins, G. (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156, 313–325.PubMedGoogle Scholar
  67. Lange, W. (1971) Crosses between Hordeum vulgare L. and H. bulbosum L. II. Elimination of chromosomes in hybrid tissue. Euphytica 20, 181–194.CrossRefGoogle Scholar
  68. Lange, W. and Jochemsen, G. (1976) Karyotypes, nucleoli, and amphiplasty in hybrids between Hordeum vulgare L and Hordeum bulbosum L. Genetica 46, 217–233.CrossRefGoogle Scholar
  69. Lapitan, N.L.V., Brown, S.E., Kennard, W., Stephens, J.L. and Knudson, D.L. (1997) FISH physical mapping with barley BAC clones. Plant J. 11, 149–156.CrossRefGoogle Scholar
  70. Lehfer, H., Busch, W., Martin, R. and Herrmann, R.G. (1993) Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma 102, 428–432.CrossRefGoogle Scholar
  71. Leitch, I.J. and Heslop-Harrison, J.S. (1992) Physical mapping of the 18S-5.8S.26S rRNA genes in barley by in situ hybridization. Genome 35, 1013–1018.CrossRefGoogle Scholar
  72. Leitch, I.J. and Heslop-Harrison, J.S. (1993) Physical mapping of 4 sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36, 517–523.PubMedCrossRefGoogle Scholar
  73. Linde-Laursen, I. (1975) Giemsa C-banding of the chromosomes of ‘Emir’ barley. Hereditas 81, 285–289.CrossRefGoogle Scholar
  74. Linde-Laursen, I., Bothmer, R. von and Jacobsen, N. (1990) Giemsa C-banded karyotypes of diploid and tetraploid Hordeum bulbosum (Poaceae). Plant Syst. Evol. 172, 141–150.CrossRefGoogle Scholar
  75. Linde-Laursen, I., Bothmer, R. von and Jacobsen, N. (1992) Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas 116, 111–116.Google Scholar
  76. Linde-Laursen, I., Heslop-Harrison, J.S., Shepherd, K.W. and Taketa, S. (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126, 1–16.CrossRefGoogle Scholar
  77. Malysheva, L., Sjakste, T., Matzk, F., Röder, M. and Ganal, M. (2003) Molecular cytogenetic analysis of wheat-barley hybrids using genomic in situ hybridization and barley microsatellite markers. Genome 46, 314–322.PubMedCrossRefGoogle Scholar
  78. Manninen, O., Kalendar, R., Robinson, J. and Schulman, A.H. (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol. Gen. Genet. 264, 325–334.PubMedCrossRefGoogle Scholar
  79. Marthe, F. and Künzel, G. (1994) Localization of translocation breakpoints in somatic metaphase chromosomes of barley. Theor. Appl. Genet. 89, 240–248.CrossRefGoogle Scholar
  80. Martin, R., Busch, W., Herrmann, R.G. and Wanner, G. (1996) Changes in chromosomal ultrastructure during the cell cycle. Chromosome Res. 4, 288–294.PubMedCrossRefGoogle Scholar
  81. Martín, A. and Cabrera, A. (2005) Cytogenetics of Hordeum chilense: current status and considerations with references to breeding. Cytogenet. Genome Res. 109, 378–384.PubMedCrossRefGoogle Scholar
  82. McIntyre, C.L., Pereira, S., Moran, L.B. and Appels, R. (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33, 635–640.PubMedCrossRefGoogle Scholar
  83. Miller, T.E., Reader, S.M. and Chapman, V. (1982) The addition of Hordeum chilense chromosomes to wheat. In: C. Broertjes (Ed.), Induced Variability in Plant Breeding. Pudoc, Wageningen, pp. 79–81.Google Scholar
  84. Molnár-Lang, M., Linc, G., Friebe, B.R. and Sutka, J. (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112, 117–123.CrossRefGoogle Scholar
  85. Molnár, I., Linc, G., Dulai, S., Nagy, E.D. and Molnár-Lang, M. (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat-barley 4H(4D) disomic substitution line. Plant Breed. 126, 369–374.CrossRefGoogle Scholar
  86. Morrison, J.W. and Rajhathy, T. (1959) Cytogenetic studies in the genus Hordeum. III. Pairing in some interspecific and intergeneric hybrids. Can. J. Gen. Cytol. 1, 65–77.Google Scholar
  87. Morrison, J.W. (1959) Cytogenetic studies in the genus Hordeum. I. Chromosome morphology. Can. J. Bot. 37, 527–538.CrossRefGoogle Scholar
  88. Murai, K., Koba, T. and Shimada, T. (1997) Effects of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96, 281–287.CrossRefGoogle Scholar
  89. Nagy, E.D., Molnár-Lang, M., Linc, G., and Láng, L. (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45, 1238–1247.PubMedCrossRefGoogle Scholar
  90. Nasuda, S., Hudakova, S., Schubert, I., Houben, A. and Endo, T.R. (2005a) Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. USA 102, 9842–9847.Google Scholar
  91. Nasuda, S., Kikkawa, Y., Ashida, T., Islam, A.K.M.R., Sato, K. and Endo, T.R. (2005b) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80, 357–366.Google Scholar
  92. Nilan, R. (1964) The cytology and genetics of barley. Monographic supplement no. 3, Research studies. Washington State University, pp. 277.Google Scholar
  93. Pedersen, C. and Linde-Laursen, I. (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res. 2, 65–71.PubMedCrossRefGoogle Scholar
  94. Pedersen, C., Rasmussen, S.K. and Linde-Laursen, I. (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39, 93–104.PubMedCrossRefGoogle Scholar
  95. Pendinen, G.I. and Chernov, V.E. (1995) Characteristics of interaction of barley Hordeum depressum (Scribn. & Sm.) Ribd. (4×) with genomes of rye Secale cereale L. (2×) and barley Hordeum vulgare L. (2×) in meiosis of F 1 hybrids. Russ. J. Genet. 31, 323–329.Google Scholar
  96. Petersen, G. (1991) Intergeneric hybridization between Hordeum and Secale. Hereditas 114, 141–159.CrossRefGoogle Scholar
  97. Pickering, R.A. (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare L. × Hordeum bulbosum L. Plant Sci. Lett. 34, 153–164.CrossRefGoogle Scholar
  98. Pickering, R.A. (1990) The influence of temperature on chromosome pairing in diploid and triploid hybrids between Hordeum vulgare L. and H. bulbosum L. Hereditas 113, 221–226.CrossRefGoogle Scholar
  99. Pickering, R.A. (1992) Monosomic and double monosomic substitutions of Hordeum bulbosum L. chromosomes into H. vulgare L. Theor. Appl. Genet. 84, 466–472.CrossRefGoogle Scholar
  100. Pickering, R.A. (1994) The chromosome stability of Hordeum vulgare L. – H. bulbosum L. substitution plants grown at two temperatures. Hereditas 121, 39–43.CrossRefGoogle Scholar
  101. Pickering, R.A., Timmerman, G.M., Cromey, M.G. and Melz, G. (1994) Characterisation of progeny from backcrosses of triploid hybrids between Hordeum vulgare L. (2×) and H. bulbosum L. (4×) to H. vulgare. Theor. Appl. Genet. 88, 460–464.CrossRefGoogle Scholar
  102. Pickering, R.A., Malyshev, S., Künzel, G., Johnston, P.A., Korzun, V., Menke, M. and Schubert, I. (2000) Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet. 100, 27–31.CrossRefGoogle Scholar
  103. Pickering, R., Niks, R.E., Johnston, P.A. and Butler R.C. (2004) Importance of Secondary and Tertiary Genepools in Barley Genetics and Breeding. II. Disease Resistance, Agronomic Performance and Quality. Czech J. Genet. Plant Breed. 40, 79–85.Google Scholar
  104. Pickering, R. and Johnston, P.A. (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet. Genome Res. 109, 344–349.Google Scholar
  105. Pickering, R., Klatte, S. and Butler, R.C. (2005) Reduced chromosome association between the short arm of 5H homologues in Hordeum vulgare L. at metaphase I. Plant Breed. 124, 416–418.CrossRefGoogle Scholar
  106. Pickering, R., Klatte, S. and Butler, R.C. (2006) Identification of all chromosome arms and their involvement in meiotic homoeologous associations at metaphase I in 2 Hordeum vulgare L. × Hordeum bulbosum L. hybrids. Genome 49, 73–78.PubMedCrossRefGoogle Scholar
  107. Presting, G.G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.PubMedCrossRefGoogle Scholar
  108. Prieto, P., Ramírez, C., Cabrera, A., Ballesteros, J. and Martín, A. (2006) Development and cytogenetic characterisation of a double goat grass-barley chromosome substitution in tritordeum. Euphytica 147, 337–342.CrossRefGoogle Scholar
  109. Qi, X. and Lindhout, P. (1997) Development of AFLP markers in barley. Mol. Gen. Genet. 254, 330–336.PubMedCrossRefGoogle Scholar
  110. Rajhathy, T. and Symko, S. (1966) The synthesis of a species: Hordeum arizonicum. Can. J. Bot. 44, 1224–1228.CrossRefGoogle Scholar
  111. Ramage, R. (1985) Cytogenetics. In: D.C. Rasmusson (Ed.), Barley, Agronomy Monograph No. 26. American Society of Agronomy, Madison, Wisconsin, pp. 127–154.Google Scholar
  112. Ramsay, L., Macaulay, M., Ivanissevich, S.D., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. (2000) A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005.PubMedGoogle Scholar
  113. Randhawa, H.S., Dilbirligi, M., Sidhu, D., Erayman, M., Sandhu, D., Bondareva, S., Chao, S., Lazo, G.R., Anderson, O.D., Miftahudin, Gustafson, J.P., Echalier, B., Qi, L.L., Gill, B.S., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Sorrells, M.E., Conley, E.J., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Nguyen, H.T., Endo, T.R., Close, T.J., McGuire, P.E., Qualset, C.O. and Gill, K.S. (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168, 677–686.PubMedCrossRefGoogle Scholar
  114. Rayburn, A.L. and Gill, B.S. (1986) Molecular identification of the D-genome chromosomes of wheat. J. Hered. 77, 253–255.Google Scholar
  115. Riley, R. and Chapman, V. (1958) Genetic control of cytologically diploid behaviour of hexaploid wheat. Nature (London) 182, 712–715.CrossRefGoogle Scholar
  116. Rimpau, J., Smith, D.B. and Flavell, R.B. (1980) Sequence organization in barley and oats chromosomes revealed by interspecies DNA-DNA hybridization. Heredity 44, 131–149.CrossRefGoogle Scholar
  117. Röder, M.S., Lapitan, N.L.V., Sorrells, M.E. and Tanksley, S.D. (1993) Genetic and physical mapping of barley telomeres. Mol. Gen. Genet. 238, 294–303.PubMedGoogle Scholar
  118. Rostoks, N., Park, Y.J., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B.A., SanMiguel, P.J., Jiang, Z., Brueggeman, R., Sandhu, D., Gill, K., Bennetzen, J.L. and Kleinhofs, A. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2, 51–59.PubMedCrossRefGoogle Scholar
  119. Ruge, B., Linz, A., Pickering, R., Proeseler, G. Greif, P. and Wehling, P. (2003) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107, 965–971.PubMedCrossRefGoogle Scholar
  120. Safar, J., Bartos, J., Janda, J., Bellec, A., Kubalakova, M., Valarik, M., Pateyron, S., Weiserova, J., Tuskova, R., Cihalikova, J., Vrana, J., Simkova, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Dolezel, J. and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.PubMedCrossRefGoogle Scholar
  121. Schubert, I. and Oud, J.L. (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88, 515–520.PubMedCrossRefGoogle Scholar
  122. Schubert, I., Shi, F., Fuchs, J. and Endo, T.R. (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 14, 489–495.CrossRefGoogle Scholar
  123. Schwarzacher, T. and Heslop-Harrison, J.S. (1991) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34, 317–323.CrossRefGoogle Scholar
  124. Serizawa, N., Nasuda, S., Shi, F., Endo, T.R., Prodanovic, S., Schubert, I. and Künzel, G. (2001) Deletion-based physical mapping of barley chromosome 7H. Theor. Appl. Genet. 103, 827–834.CrossRefGoogle Scholar
  125. Shepherd, K.W. and Islam, A.K.M.R. (1992) Progress in the production of wheat-barley addition and recombination lines and their use in mapping the barley genome. In: P.R. Shewry (Ed), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford, UK, pp. 99–114.Google Scholar
  126. Sherman, J.D., Smith, L.Y., Blake, T.K. and Talbert, L.E. (2001) Identification of barley genome segments introgressed into wheat using PCR markers. Genome 44, 38–44.PubMedCrossRefGoogle Scholar
  127. Shi, F. and Endo, T.R. (1999) Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes Genet. Syst. 74, 49–54.CrossRefGoogle Scholar
  128. Singh, R.J. and Tsuchiya, T. (1982) Identification and designation of telocentric chromosomes in barley by means of Giemsa N-banding technique. Theor. Appl. Genet. 64, 13–24.CrossRefGoogle Scholar
  129. Singh, R.J. (2003) Plant Cytogenetics, 2nd edition. CRC Press, Boca Raton, USA.Google Scholar
  130. Sorokin, A., Marthe, F., Houben, A., Pich, U., Graner, A. and Künzel, G. (1994) Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome 37, 550–555.PubMedCrossRefGoogle Scholar
  131. Stein, N. (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res. 15, 21–31.PubMedCrossRefGoogle Scholar
  132. Stephens, J.L., Brown, S.E., Lapitan, N.L.V. and Knudson, D.L. (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47, 179–189.PubMedCrossRefGoogle Scholar
  133. Subrahmanyam, N.C. and Kasha, K.J. (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42, 111–125.CrossRefGoogle Scholar
  134. Subrahmanyam, N.C. (1978) Meiosis in polyhaploid Hordeum: hemizygous ineffective control of diploid-like behaviour in a hexaploid? Chromosoma 66, 185–192.CrossRefGoogle Scholar
  135. Suchankova, P., Kubalakova, M., Kovarova, P., Bartos, J., Cihalikova, J., Molnar-Lang, M., Endo, T.R. and Dolezel, J. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor. Appl. Genet. 113, 651–659.PubMedCrossRefGoogle Scholar
  136. Szakacs, E. and Molnár-Lang, M. (2007) Development and molecular cytogenetic identification of new winter wheat-winter barley (‘Martonvasari 9 kr1’-‘Igri’) disomic addition lines. Genome 50, 43–50.PubMedCrossRefGoogle Scholar
  137. Szigat, G. and Pohler, W. (1982) Hordeum bulbosum × H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res. Commun. 10, 73–78.Google Scholar
  138. Taketa, S., Ando, H., Takeda, K., Harrison, G.E. and Heslop-Harrison, J.S. (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 100, 169–176.CrossRefGoogle Scholar
  139. Taketa, S., Linde-Laursen, I. and Künzel, G. (2003) Cytogenetic diversity. In: R. von Bothmer, T. van Hintum, H. Knüpffer and K. Sato (Eds.), Diversity in Barley (Hordeum vulgare). Developments in Plant Genetics and Breeding, 7. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 97–119.Google Scholar
  140. Taketa, S., Awayama, T., Ichii, M., Sunakawa, M., Kawahara, T. and Murai, K. (2005) Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome 48, 115–124.PubMedCrossRefGoogle Scholar
  141. Thomas, H.M. and Pickering, R.A. (1983) Chromosome elimination in Hordeum vulgare × Hordeum bulbosum hybrids. 2. Chromosome behavior in secondary hybrids. Theor. Appl. Genet. 66, 141–146.CrossRefGoogle Scholar
  142. Timmerman, G.M., Pickering, R.A. and Melz, G. (1993) Characterization of Hordeum vulgare - Hordeum bulbosum chromosome substitution lines by restriction fragment length polymorphism analysis. Genome 36, 507–511.PubMedCrossRefGoogle Scholar
  143. Tsuchiya, T. (1991) Chromosome mapping by means of aneuploid analysis in barley. In: P.K. Gupta and T. Tsuchiya (Eds.), Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Part A. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 361–384.Google Scholar
  144. Tsujimoto, H., Mukai, Y., Akagawa, K., Nagaki, K., Fujigaki, J., Yamamoto, M. and Sasakuma, T. (1997) Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat. Genes Genet. Syst. 72, 303–309.PubMedCrossRefGoogle Scholar
  145. Valarik, M., Bartos, J., Kovarova, P., Kubalakova, M., de Jong, J.H. and Dolezel, J. (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J. 37, 940–950.PubMedCrossRefGoogle Scholar
  146. Varshney, R.K., Grosse, I., Hahnel, U., Siefken, R., Prasad, M., Stein, N., Langridge, P., Altschmied, L. and Graner, A. (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239–250.PubMedCrossRefGoogle Scholar
  147. Walther, U., Rapke, H., Proeseler, G. and Szigat, G. (2000) Hordeum bulbosum – a new source of disease resistance – transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119, 215–218.CrossRefGoogle Scholar
  148. Wang, S., Lapitan, N.L.V. and Tsuchiya, T. (1991) Characterization of telomeres in Hordeum vulgare chromosomes by in situ hybridization. 1. Normal diploid barley. Jpn. J. Genet. 66, 313–316.CrossRefGoogle Scholar
  149. Werner, J.E., Endo, T.R. and Gill, B.S. (1992) Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89, 11307–11311.PubMedCrossRefGoogle Scholar
  150. Xu, J. and Snape, J.W. (1988) The cytology of hybrids between Hordeum vulgare and H. bulbosum revisited. Genome 30, 486–494.Google Scholar
  151. Xu, J., Procunier, J.D. and Kasha, K.J. (1990) Species-specific in situ hybridization of Hordeum bulbosum chromosomes. Genome 33, 628–634.CrossRefGoogle Scholar
  152. Xu, J. and Kasha, K.J. (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Theor. Appl. Genet. 84, 771–777.CrossRefGoogle Scholar
  153. Zhang, H.N., Nasuda, S. and Endo, T.R. (2000) Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome 43, 729–735.PubMedCrossRefGoogle Scholar
  154. Zhang, L., Pickering, R.A. and Murray, B.G. (2001) A Hordeum vulgare × H. bulbosum tetraploid hybrid provides useful agronomic introgression lines for breeders. N. Z. J. Crop Hortic. Sci. 29, 239–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Germany
  2. 2.New Zealand Institute for Crop and Food Research LimitedChristchurchNew Zealand

Personalised recommendations