Skip to main content

Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum

  • Chapter
  • First Online:
Book cover Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

Cytogenetic analyses have been widely applied for characterising the barley (Hordeum vulgare) genome under the microscope. The methods and results have been extensively reviewed and will only be outlined in this chapter. We focus instead on the applications of cytogenetics and genomics relating to physically mapping the barley genome and for determining species relationships in the genus Hordeum through the meiotic analysis of wide hybrids. The application of cytogenetical tools in breeding programmes will be described. Finally we summarise our knowledge of the cellular processes involved in the generation of haploid barley via uniparental chromosome elimination in H. vulgare × H. bulbosum hybrid embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananiev, E. (1992) Nuclear genome structure and organization. In: P.R. Shewry (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford, UK, pp. 133–150.

    Google Scholar 

  • Ashida, T., Nasuda, S., Sato, K. and Endo, T.R. (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet. Syst. 82, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Banks, P.M., Larkin, P.J., Bariana, H.S., Lagudah, E.S., Appels, R., Waterhouse, P.M., Brettell, R.I.S., Chen, X., Xu, H.J., Xin, Z.Y., Qian, Y.T., Zhou, X.M., Cheng, Z.M. and Zhou, G.H. (1995) The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38, 395–405

    Article  PubMed  CAS  Google Scholar 

  • Barakat, A., Carels, N. and Bernardi, G. (1997) The distribution of genes in the genomes of Gramineae. Proc. Natl. Acad. Sci. USA 94, 6857–6861.

    Article  CAS  Google Scholar 

  • Baum, B.R. and Bailey, G. (1988) A taxonomic investigation of Hordeum arizonicum (Poaceae: Triticeae) with reference to related species. Can. J. Bot. 66, 1848–1855.

    Article  Google Scholar 

  • Bayliss, M.W. and Riley, R. (1972) An analysis of temperature-dependent asynapsis in Triticum aestivum. Genet. Res. Camb. 20, 193–200.

    Article  Google Scholar 

  • Becker, J. and Heun, M. (1995) Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome 38, 991–998.

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook, J.R., Jones, J., Odell, M., Thompson, R.D. and Flavell, R.B. (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky, D.A. and Ananiev, E.V. (1990) Characterization of relic DNA from barley genome. Theor. Appl. Genet. 80, 374–380.

    Article  Google Scholar 

  • Bennett, M.D., Finch, R.A. and Barclay, I.R. (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54, 175–200.

    Article  Google Scholar 

  • Bothmer, R. von, Flink, J., Jacobsen, N., Kotimäki, M. and Landström, T. (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99, 219–244.

    Article  Google Scholar 

  • Bothmer, R. von, Flink, J. and Landström, T. (1987) Meiosis in Hordeum interspecific hybrids. II. Triploid hybrids. Evol. Trend. Plant. 1, 41–50.

    Google Scholar 

  • Bothmer, R. von, Jacobsen, N., Baden, C., Jørgensen, R.B. and Linde-Laursen, I. (1995) An ecogeographical study of the genus Hordeum. (1995) 2nd edition. Systematic and Ecogeographical Studies on Crop Genepools 7. IPGRI, Rome, Italy.

    Google Scholar 

  • Brandes, A., Röder, M.S. and Ganal, M.W. (1995) Barley telomeres are associated with two different types of satellite DNA sequences. Chromosome Res. 3, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.E., Stephens, J.L., Lapitan, N.L.V. and Knudson, D.L. (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42, 274–281.

    PubMed  CAS  Google Scholar 

  • Busch, W., Martin, R., Herrmann, R.G. and Hohmann, U. (1995) Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.). Genome 38, 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Busch, W., Herrmann, R.G., Houben, A. and Martin, R. (1996) Efficient preparation of plant metaphase spreads. Plant Mol. Biol. Rep. 14, 149–155.

    Article  CAS  Google Scholar 

  • Cabrera, A., Friebe, B., Jiang, J. and Gill, B.S. (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38, 435–442.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S.H., Garvin, D.F. and Muehlbauer, G.J. (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172, 1277–1285.

    Article  PubMed  Google Scholar 

  • Costa, J.M. and Singh, R.J. (2006) Chromosome mapping in barley (Hordeum vulgare L.). In: R.J. Singh and P.P. Jauhar (Eds.), Genetic Resources, Chromosome Engineering, and Crop Improvement, Volume 2, Cereals, CRC Press, Boca Raton, pp. 257–280.

    Google Scholar 

  • Cuadrado, A. and Jouve, N. (2007) The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res. 15, 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Dahleen, L.S. (1999) Tissue culture increases meiotic pairing of regenerants from barley × Canada wild rye hybrids. J. Hered. 90, 265–269.

    Article  Google Scholar 

  • de Bustos, A., Cuadrado, A., Soler, C. and Jouve, N. (1996) Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Res. 4, 491–499.

    Article  PubMed  Google Scholar 

  • Devaux, P. and Pickering, R. (2005) Haploids in the Improvement of Poaceae. In: C.E. Palmer, W.A. Keller and K.J. Kasha (Eds.), Haploids in Crop Improvement II, Series: Biotechnology in Agriculture and Forestry, Vol 56. Springer, Berlin, Heidelberg, pp. 215–242.

    Chapter  Google Scholar 

  • Dolezel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M., Nardi, L. and Obermyer, R. (1998) Plant genome size estimation of flow cytometry: inter-laboratory comparison. Ann. Bot. (Lond) 82 (Supp. A), 17–26.

    Article  CAS  Google Scholar 

  • Endo, T.R. (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79, 366–370.

    Google Scholar 

  • Fedak, G. (1982) Effect of cultivar combination on meiosis in barley-wheat hybrids. Can. J. Genet. Cytol. 24, 575–582.

    Google Scholar 

  • Fernandez, J.A. and Jouve, N. (1988) The addition of Hordeum chilense chromosomes to Triticum turgidum conv. durum. Biochemical, karyological and morphological characterization. Euphytica 37, 247–259.

    CAS  Google Scholar 

  • Finch, R.A. and Bennett, M.D. (1982) The mechanism of somatic chromosome elimination in Hordeum. In: P.E. Brandham and M.D. Bennett (Eds.), Kew Chromosome conference II. London, pp. 146–153.

    Google Scholar 

  • Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458.

    Article  Google Scholar 

  • Fukui, K., Kamisugi, Y. and Sakai, F. (1994) Physical mapping of 5S rDNA loci by direct cloned biotinylated probes in barley chromosomes. Genome 37, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama, T. and Hosoya, H. (1983) Genetic control and mechanism of chromosome elimination in the hybrids between Hordeum bulbosum (4×) and Hordeum vulgare (4×). Jpn. J. Genet. 58, 241–250.

    Article  Google Scholar 

  • Gerlach, W.L. and Bedbrook, J.R. (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885.

    Article  PubMed  CAS  Google Scholar 

  • Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Bruss, C., Kumlehn, J., Matzk, F. and Houben, A. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17, 2431–2438.

    Article  PubMed  CAS  Google Scholar 

  • Gernand, D., Rutten, T., Pickering, R. and Houben, A. (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet. Genome Res. 114, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.

    Article  Google Scholar 

  • Gupta, P.K. and Fedak, G. (1985a) Genetic control of meiotic chromosome pairing in polyploids in the genus Hordeum. Can. J. Gen. Cyt. 27, 515–530.

    Google Scholar 

  • Gupta, P.K. and Fedak, G. (1985b) Meiosis in seven intergeneric hybrids between Hordeum and Secale. Z. Pflanzenzüchtg. 95, 262–273.

    Google Scholar 

  • Harlan, J.R. and de Wet, J.M.J. (1971) Toward a rational classification of cultivated plants. Taxon 20, 509–517.

    Article  Google Scholar 

  • Hart, G.E., Islam, A.K.M.R. and Shepherd, K.W. (1980) Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet. Res. Camb. 311–325.

    Google Scholar 

  • Heddle, J.A. and Carrano, A.V. (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma-irradation: evidence that miconuclei arise from acentric chromsomal fragments. Mutat. Res. 44, 63–69.

    PubMed  CAS  Google Scholar 

  • Ho, K.M. and Kasha, K.J. (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81, 263–275.

    PubMed  CAS  Google Scholar 

  • Houben, A., Schroeder-Reiter, E., Nagaki, K., Nasuda, S., Wanner, G., Murata, M. and Endo, T.R. (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116, 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Hudakova, S., Michalek, W., Presting, G.G., ten Hoopen, R., dos Santos, K., Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucleic Acids Res. 29, 5029–5035.

    Article  PubMed  CAS  Google Scholar 

  • Hudakova, S., Künzel, G., Endo, T.R. and Schubert, I. (2002) Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions. Cytogenet. Genome Res. 98, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Islam, A.K.M.R., Shepherd, K.W. and Sparrow, D.H.B. (1981) Isolation and characterization of euplasmic wheat-barley addition lines. Heredity 46, 161–174.

    Article  Google Scholar 

  • Islam, A.K.M.R. (1980) Identification of wheat-barley addition lines with N-banding of chromosomes. Chromosoma 76, 365–373.

    Article  Google Scholar 

  • Islam, A.K.M.R. (1983) Ditelosomic additions of barley chromosomes to wheat. In: S. Sakamoto (Ed.), Proc 6th Int. Wheat Genetics Symp. Kyoto University Press, Kyoto, Japan, pp. 233–238.

    Google Scholar 

  • Islam, A.K.M.R. and Shepherd, K.W. (1992a) Substituting ability of individual barley chromosomes for wheat chromosomes. Plant. Breed. 109, 141–150.

    Google Scholar 

  • Islam, A.K.M.R. and Shepherd, K.W. (1992b) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. Theor. Appl. Genet. 83, 489–494.

    Google Scholar 

  • Islam, A.K.M.R. and Shepherd, K.W. (2000) Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica 111, 145–149.

    Article  Google Scholar 

  • Jensen, J. and Linde-Laursen, I. (1992) Statistical evaluation of length measurements on barley chromosomes with a proposal for a new nomenclature for symbols and positions of cytological markers. Hereditas 117, 51–59.

    Article  Google Scholar 

  • Johnston, P.A. and Pickering, R. (2002) PCR detection of Hordeum bulbosum introgressions in an H. vulgare background using a retrotransposon-like sequence. Theor. Appl. Genet. 104, 720–726.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, R.B. and Andersen, B. (1989) Karyotype analysis of regenerated plants from callus cultures of interspecific hybrids of cultivated barley (Hordeum vulgare L.). Theor. Appl. Gen. 77, 343–351.

    Article  Google Scholar 

  • Kasha, K.J. and Kao, K.N. (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225, 874–876.

    Article  PubMed  CAS  Google Scholar 

  • Kasha, K.J. and Sadasivaiah, R.S. (1971) Genome relationships between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35, 264–287.

    Article  Google Scholar 

  • Kato, A., Albert, P., Vega, J. and Birchler, J. (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N.S., Armstrong, K.C., Fedak, G., Ho, K. and Park, N.I. (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • King, J., Armstead, I.P., Donnison, I.S., Harper, J.A., Roberts, L.A., Thomas, H., Ougham, H., Thomas, A., Huang, L. and King, I.P. (2007) Introgression mapping in grasses. Chromosome Res. 15, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs, A., Kilian, A., Maroof, M.A.S., Biyashev, R.M., Hayes, P., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skadsen, R. and Steffenson, B.J. (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86, 705–712.

    Article  CAS  Google Scholar 

  • Koba, T., Handa, T. and Shimada, T. (1991) Efficient production of wheat-barley hybrids and preferential elimination of barley chromosomes. Theor. Appl. Genet. 81, 285–292.

    Article  Google Scholar 

  • Kopyto, R., Crane, C.F. and Sleper, D.A. (1989) Effect of temperature on meiosis and fertility in Festuca mairei × Festuca arundinacea var. glaucescens. Genome 32, 708–718.

    Article  Google Scholar 

  • Kumar, A. and Bennetzen, J.L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.

    Article  PubMed  CAS  Google Scholar 

  • Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.

    PubMed  Google Scholar 

  • Künzel, G. and Waugh, R. (2002) Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor. Appl. Genet. 105, 660–665.

    Article  PubMed  CAS  Google Scholar 

  • Langdon, T., Seago, C., Mende, M., Leggett, M., Thomas, H., Forster, J.W., Jones, R.N. and Jenkins, G. (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156, 313–325.

    PubMed  CAS  Google Scholar 

  • Lange, W. (1971) Crosses between Hordeum vulgare L. and H. bulbosum L. II. Elimination of chromosomes in hybrid tissue. Euphytica 20, 181–194.

    Article  Google Scholar 

  • Lange, W. and Jochemsen, G. (1976) Karyotypes, nucleoli, and amphiplasty in hybrids between Hordeum vulgare L and Hordeum bulbosum L. Genetica 46, 217–233.

    Article  Google Scholar 

  • Lapitan, N.L.V., Brown, S.E., Kennard, W., Stephens, J.L. and Knudson, D.L. (1997) FISH physical mapping with barley BAC clones. Plant J. 11, 149–156.

    Article  CAS  Google Scholar 

  • Lehfer, H., Busch, W., Martin, R. and Herrmann, R.G. (1993) Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma 102, 428–432.

    Article  Google Scholar 

  • Leitch, I.J. and Heslop-Harrison, J.S. (1992) Physical mapping of the 18S-5.8S.26S rRNA genes in barley by in situ hybridization. Genome 35, 1013–1018.

    Article  CAS  Google Scholar 

  • Leitch, I.J. and Heslop-Harrison, J.S. (1993) Physical mapping of 4 sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36, 517–523.

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen, I. (1975) Giemsa C-banding of the chromosomes of ‘Emir’ barley. Hereditas 81, 285–289.

    Article  Google Scholar 

  • Linde-Laursen, I., Bothmer, R. von and Jacobsen, N. (1990) Giemsa C-banded karyotypes of diploid and tetraploid Hordeum bulbosum (Poaceae). Plant Syst. Evol. 172, 141–150.

    Article  Google Scholar 

  • Linde-Laursen, I., Bothmer, R. von and Jacobsen, N. (1992) Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas 116, 111–116.

    Google Scholar 

  • Linde-Laursen, I., Heslop-Harrison, J.S., Shepherd, K.W. and Taketa, S. (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126, 1–16.

    Article  CAS  Google Scholar 

  • Malysheva, L., Sjakste, T., Matzk, F., Röder, M. and Ganal, M. (2003) Molecular cytogenetic analysis of wheat-barley hybrids using genomic in situ hybridization and barley microsatellite markers. Genome 46, 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Manninen, O., Kalendar, R., Robinson, J. and Schulman, A.H. (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol. Gen. Genet. 264, 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Marthe, F. and Künzel, G. (1994) Localization of translocation breakpoints in somatic metaphase chromosomes of barley. Theor. Appl. Genet. 89, 240–248.

    Article  CAS  Google Scholar 

  • Martin, R., Busch, W., Herrmann, R.G. and Wanner, G. (1996) Changes in chromosomal ultrastructure during the cell cycle. Chromosome Res. 4, 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Martín, A. and Cabrera, A. (2005) Cytogenetics of Hordeum chilense: current status and considerations with references to breeding. Cytogenet. Genome Res. 109, 378–384.

    Article  PubMed  Google Scholar 

  • McIntyre, C.L., Pereira, S., Moran, L.B. and Appels, R. (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33, 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T.E., Reader, S.M. and Chapman, V. (1982) The addition of Hordeum chilense chromosomes to wheat. In: C. Broertjes (Ed.), Induced Variability in Plant Breeding. Pudoc, Wageningen, pp. 79–81.

    Google Scholar 

  • Molnár-Lang, M., Linc, G., Friebe, B.R. and Sutka, J. (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112, 117–123.

    Article  Google Scholar 

  • Molnár, I., Linc, G., Dulai, S., Nagy, E.D. and Molnár-Lang, M. (2007) Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat-barley 4H(4D) disomic substitution line. Plant Breed. 126, 369–374.

    Article  CAS  Google Scholar 

  • Morrison, J.W. and Rajhathy, T. (1959) Cytogenetic studies in the genus Hordeum. III. Pairing in some interspecific and intergeneric hybrids. Can. J. Gen. Cytol. 1, 65–77.

    Google Scholar 

  • Morrison, J.W. (1959) Cytogenetic studies in the genus Hordeum. I. Chromosome morphology. Can. J. Bot. 37, 527–538.

    Article  Google Scholar 

  • Murai, K., Koba, T. and Shimada, T. (1997) Effects of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96, 281–287.

    Article  Google Scholar 

  • Nagy, E.D., Molnár-Lang, M., Linc, G., and Láng, L. (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45, 1238–1247.

    Article  PubMed  CAS  Google Scholar 

  • Nasuda, S., Hudakova, S., Schubert, I., Houben, A. and Endo, T.R. (2005a) Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. USA 102, 9842–9847.

    Google Scholar 

  • Nasuda, S., Kikkawa, Y., Ashida, T., Islam, A.K.M.R., Sato, K. and Endo, T.R. (2005b) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80, 357–366.

    Google Scholar 

  • Nilan, R. (1964) The cytology and genetics of barley. Monographic supplement no. 3, Research studies. Washington State University, pp. 277.

    Google Scholar 

  • Pedersen, C. and Linde-Laursen, I. (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res. 2, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, C., Rasmussen, S.K. and Linde-Laursen, I. (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Pendinen, G.I. and Chernov, V.E. (1995) Characteristics of interaction of barley Hordeum depressum (Scribn. & Sm.) Ribd. (4×) with genomes of rye Secale cereale L. (2×) and barley Hordeum vulgare L. (2×) in meiosis of F 1 hybrids. Russ. J. Genet. 31, 323–329.

    CAS  Google Scholar 

  • Petersen, G. (1991) Intergeneric hybridization between Hordeum and Secale. Hereditas 114, 141–159.

    Article  Google Scholar 

  • Pickering, R.A. (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare L. × Hordeum bulbosum L. Plant Sci. Lett. 34, 153–164.

    Article  Google Scholar 

  • Pickering, R.A. (1990) The influence of temperature on chromosome pairing in diploid and triploid hybrids between Hordeum vulgare L. and H. bulbosum L. Hereditas 113, 221–226.

    Article  Google Scholar 

  • Pickering, R.A. (1992) Monosomic and double monosomic substitutions of Hordeum bulbosum L. chromosomes into H. vulgare L. Theor. Appl. Genet. 84, 466–472.

    Article  Google Scholar 

  • Pickering, R.A. (1994) The chromosome stability of Hordeum vulgare L. – H. bulbosum L. substitution plants grown at two temperatures. Hereditas 121, 39–43.

    Article  Google Scholar 

  • Pickering, R.A., Timmerman, G.M., Cromey, M.G. and Melz, G. (1994) Characterisation of progeny from backcrosses of triploid hybrids between Hordeum vulgare L. (2×) and H. bulbosum L. (4×) to H. vulgare. Theor. Appl. Genet. 88, 460–464.

    Article  Google Scholar 

  • Pickering, R.A., Malyshev, S., Künzel, G., Johnston, P.A., Korzun, V., Menke, M. and Schubert, I. (2000) Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet. 100, 27–31.

    Article  CAS  Google Scholar 

  • Pickering, R., Niks, R.E., Johnston, P.A. and Butler R.C. (2004) Importance of Secondary and Tertiary Genepools in Barley Genetics and Breeding. II. Disease Resistance, Agronomic Performance and Quality. Czech J. Genet. Plant Breed. 40, 79–85.

    Google Scholar 

  • Pickering, R. and Johnston, P.A. (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet. Genome Res. 109, 344–349.

    CAS  Google Scholar 

  • Pickering, R., Klatte, S. and Butler, R.C. (2005) Reduced chromosome association between the short arm of 5H homologues in Hordeum vulgare L. at metaphase I. Plant Breed. 124, 416–418.

    Article  Google Scholar 

  • Pickering, R., Klatte, S. and Butler, R.C. (2006) Identification of all chromosome arms and their involvement in meiotic homoeologous associations at metaphase I in 2 Hordeum vulgare L. × Hordeum bulbosum L. hybrids. Genome 49, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Presting, G.G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Prieto, P., Ramírez, C., Cabrera, A., Ballesteros, J. and Martín, A. (2006) Development and cytogenetic characterisation of a double goat grass-barley chromosome substitution in tritordeum. Euphytica 147, 337–342.

    Article  CAS  Google Scholar 

  • Qi, X. and Lindhout, P. (1997) Development of AFLP markers in barley. Mol. Gen. Genet. 254, 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Rajhathy, T. and Symko, S. (1966) The synthesis of a species: Hordeum arizonicum. Can. J. Bot. 44, 1224–1228.

    Article  Google Scholar 

  • Ramage, R. (1985) Cytogenetics. In: D.C. Rasmusson (Ed.), Barley, Agronomy Monograph No. 26. American Society of Agronomy, Madison, Wisconsin, pp. 127–154.

    Google Scholar 

  • Ramsay, L., Macaulay, M., Ivanissevich, S.D., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. (2000) A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005.

    PubMed  CAS  Google Scholar 

  • Randhawa, H.S., Dilbirligi, M., Sidhu, D., Erayman, M., Sandhu, D., Bondareva, S., Chao, S., Lazo, G.R., Anderson, O.D., Miftahudin, Gustafson, J.P., Echalier, B., Qi, L.L., Gill, B.S., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Sorrells, M.E., Conley, E.J., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Nguyen, H.T., Endo, T.R., Close, T.J., McGuire, P.E., Qualset, C.O. and Gill, K.S. (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168, 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Rayburn, A.L. and Gill, B.S. (1986) Molecular identification of the D-genome chromosomes of wheat. J. Hered. 77, 253–255.

    CAS  Google Scholar 

  • Riley, R. and Chapman, V. (1958) Genetic control of cytologically diploid behaviour of hexaploid wheat. Nature (London) 182, 712–715.

    Article  Google Scholar 

  • Rimpau, J., Smith, D.B. and Flavell, R.B. (1980) Sequence organization in barley and oats chromosomes revealed by interspecies DNA-DNA hybridization. Heredity 44, 131–149.

    Article  CAS  Google Scholar 

  • Röder, M.S., Lapitan, N.L.V., Sorrells, M.E. and Tanksley, S.D. (1993) Genetic and physical mapping of barley telomeres. Mol. Gen. Genet. 238, 294–303.

    PubMed  Google Scholar 

  • Rostoks, N., Park, Y.J., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B.A., SanMiguel, P.J., Jiang, Z., Brueggeman, R., Sandhu, D., Gill, K., Bennetzen, J.L. and Kleinhofs, A. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Ruge, B., Linz, A., Pickering, R., Proeseler, G. Greif, P. and Wehling, P. (2003) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107, 965–971.

    Article  PubMed  CAS  Google Scholar 

  • Safar, J., Bartos, J., Janda, J., Bellec, A., Kubalakova, M., Valarik, M., Pateyron, S., Weiserova, J., Tuskova, R., Cihalikova, J., Vrana, J., Simkova, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Dolezel, J. and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, I. and Oud, J.L. (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, I., Shi, F., Fuchs, J. and Endo, T.R. (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 14, 489–495.

    Article  CAS  Google Scholar 

  • Schwarzacher, T. and Heslop-Harrison, J.S. (1991) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34, 317–323.

    Article  Google Scholar 

  • Serizawa, N., Nasuda, S., Shi, F., Endo, T.R., Prodanovic, S., Schubert, I. and Künzel, G. (2001) Deletion-based physical mapping of barley chromosome 7H. Theor. Appl. Genet. 103, 827–834.

    Article  CAS  Google Scholar 

  • Shepherd, K.W. and Islam, A.K.M.R. (1992) Progress in the production of wheat-barley addition and recombination lines and their use in mapping the barley genome. In: P.R. Shewry (Ed), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. CAB International, Wallingford, UK, pp. 99–114.

    Google Scholar 

  • Sherman, J.D., Smith, L.Y., Blake, T.K. and Talbert, L.E. (2001) Identification of barley genome segments introgressed into wheat using PCR markers. Genome 44, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Shi, F. and Endo, T.R. (1999) Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes Genet. Syst. 74, 49–54.

    Article  Google Scholar 

  • Singh, R.J. and Tsuchiya, T. (1982) Identification and designation of telocentric chromosomes in barley by means of Giemsa N-banding technique. Theor. Appl. Genet. 64, 13–24.

    Article  Google Scholar 

  • Singh, R.J. (2003) Plant Cytogenetics, 2nd edition. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Sorokin, A., Marthe, F., Houben, A., Pich, U., Graner, A. and Künzel, G. (1994) Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome 37, 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N. (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res. 15, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J.L., Brown, S.E., Lapitan, N.L.V. and Knudson, D.L. (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Subrahmanyam, N.C. and Kasha, K.J. (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42, 111–125.

    Article  Google Scholar 

  • Subrahmanyam, N.C. (1978) Meiosis in polyhaploid Hordeum: hemizygous ineffective control of diploid-like behaviour in a hexaploid? Chromosoma 66, 185–192.

    Article  Google Scholar 

  • Suchankova, P., Kubalakova, M., Kovarova, P., Bartos, J., Cihalikova, J., Molnar-Lang, M., Endo, T.R. and Dolezel, J. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor. Appl. Genet. 113, 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Szakacs, E. and Molnár-Lang, M. (2007) Development and molecular cytogenetic identification of new winter wheat-winter barley (‘Martonvasari 9 kr1’-‘Igri’) disomic addition lines. Genome 50, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Szigat, G. and Pohler, W. (1982) Hordeum bulbosum × H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res. Commun. 10, 73–78.

    Google Scholar 

  • Taketa, S., Ando, H., Takeda, K., Harrison, G.E. and Heslop-Harrison, J.S. (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 100, 169–176.

    Article  CAS  Google Scholar 

  • Taketa, S., Linde-Laursen, I. and Künzel, G. (2003) Cytogenetic diversity. In: R. von Bothmer, T. van Hintum, H. Knüpffer and K. Sato (Eds.), Diversity in Barley (Hordeum vulgare). Developments in Plant Genetics and Breeding, 7. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 97–119.

    Google Scholar 

  • Taketa, S., Awayama, T., Ichii, M., Sunakawa, M., Kawahara, T. and Murai, K. (2005) Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome 48, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, H.M. and Pickering, R.A. (1983) Chromosome elimination in Hordeum vulgare × Hordeum bulbosum hybrids. 2. Chromosome behavior in secondary hybrids. Theor. Appl. Genet. 66, 141–146.

    Article  Google Scholar 

  • Timmerman, G.M., Pickering, R.A. and Melz, G. (1993) Characterization of Hordeum vulgare - Hordeum bulbosum chromosome substitution lines by restriction fragment length polymorphism analysis. Genome 36, 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, T. (1991) Chromosome mapping by means of aneuploid analysis in barley. In: P.K. Gupta and T. Tsuchiya (Eds.), Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Part A. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 361–384.

    Google Scholar 

  • Tsujimoto, H., Mukai, Y., Akagawa, K., Nagaki, K., Fujigaki, J., Yamamoto, M. and Sasakuma, T. (1997) Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat. Genes Genet. Syst. 72, 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Valarik, M., Bartos, J., Kovarova, P., Kubalakova, M., de Jong, J.H. and Dolezel, J. (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J. 37, 940–950.

    Article  PubMed  CAS  Google Scholar 

  • Varshney, R.K., Grosse, I., Hahnel, U., Siefken, R., Prasad, M., Stein, N., Langridge, P., Altschmied, L. and Graner, A. (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Walther, U., Rapke, H., Proeseler, G. and Szigat, G. (2000) Hordeum bulbosum – a new source of disease resistance – transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119, 215–218.

    Article  Google Scholar 

  • Wang, S., Lapitan, N.L.V. and Tsuchiya, T. (1991) Characterization of telomeres in Hordeum vulgare chromosomes by in situ hybridization. 1. Normal diploid barley. Jpn. J. Genet. 66, 313–316.

    Article  Google Scholar 

  • Werner, J.E., Endo, T.R. and Gill, B.S. (1992) Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89, 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. and Snape, J.W. (1988) The cytology of hybrids between Hordeum vulgare and H. bulbosum revisited. Genome 30, 486–494.

    Google Scholar 

  • Xu, J., Procunier, J.D. and Kasha, K.J. (1990) Species-specific in situ hybridization of Hordeum bulbosum chromosomes. Genome 33, 628–634.

    Article  Google Scholar 

  • Xu, J. and Kasha, K.J. (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Theor. Appl. Genet. 84, 771–777.

    Article  CAS  Google Scholar 

  • Zhang, H.N., Nasuda, S. and Endo, T.R. (2000) Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome 43, 729–735.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Pickering, R.A. and Murray, B.G. (2001) A Hordeum vulgare × H. bulbosum tetraploid hybrid provides useful agronomic introgression lines for breeders. N. Z. J. Crop Hortic. Sci. 29, 239–246.

    Article  Google Scholar 

Download references

Acknowledgments

The authors have been supported by the DFG, Germany (DFG HO 1779/9-1) and under an EU Marie Curie Research Fellowship (219313). R Pickering also thanks the Foundation for Research, Science and Technology (New Zealand) for financial support and his colleagues in Plant & Food Research, especially Paul Johnston, Viji Meiyalaghan and Stan Ebdon. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Houben, A., Pickering, R. (2009). Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum . In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_5

Download citation

Publish with us

Policies and ethics