Cytogenetic Analysis of Wheat and Rye Genomes

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Cytogenetics is the correlated study of genetics and cytology. In cereals, five phases of cytogenetic research can be recognized: (i) meiotic pairing analysis of F1 hybrids; (ii) aneuploidy. (iii) molecular cytogenetics (C-banding and in situ hybridization); (iv) deletion bin mapping; and (v) flow cytogenetics. We review here the first four phases of cytogenetic research with special reference to chromosome analysis of wheat and rye. Meiotic pairing analysis revealed genomic relationships among diploid and polyploid species. Aneuploidy opened possibilities of chromosome/arm and comparative mapping. C-banding and in situ hybridization allowed rapid identification and analysis of heterochromatic and euchromatic components of wheat and rye chromosomes. The isolation of deletion stocks and their use to study the structure and function of the expressed portion of the wheat genome further revealed structural and functional differentiation of wheat chromosomes into proximal gene-poor/low recombination and distal gene-rich/high recombination compartments. The abovementioned structural and functional differentiation may have been driven by chromosome behavior at meiosis. As DNA sequence information becomes available and with the application of techniques such as Fiber FISH and others that close the gap between DNA level and chromosome level observations, we can truly begin to understand the biological meaning of the superimposed structural, functional, and behavioral differentiation and organization of cereal chromosomes.


Wheat Chromosome Wheat Genome Chinese Spring Wheat International Wheat Genome Sequencing Consortium Deletion Stock 



Research supported in part by grants from the USDA-CSREES, National Science Foundation, and the Kansas Wheat Commission. This is contribution 08-347-B from the Kansas Agricultural Experiment Station.


  1. Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Lazo, G., Chao, S., Anderson, O.D., David, J., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J., Lapitan, N.L.V., Wennerlind, E.J., Nduati, V., Anderson, J.A., Sidhu, D., Gill, K.S., McGuire, P.E., Qualset, C.O., and Dvorak, J. (2003a). Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc. Natl. Acad. Sci. USA 100, 10836–10841.Google Scholar
  2. Akhunov, E.D., Goodyear, A.W., Geng, S., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., Lazo, G., Chao, S., Anderson, O.D., Linkiewicz, A.M., Dubcovsky, J., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Choi, D-W., Close, T.J., Dilbirligi, M., Gill, K.S., Walker-Simmons, M.K., Steber, C., McGuire, P.E., Qualset, C.O., and Dvorak, J. (2003b). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13, 753–763.Google Scholar
  3. Appels, R. (1982) The molecular cytology of wheat-rye hybrids. Int. Rev. Cytol. 80, 83–132.Google Scholar
  4. Appels, R., Dennis, E.S., Smyth, D.R., and Peacock, W.J. (1981) Two repeated DNA sequences from the heterochromatic regions of rye chromosomes. Chromosoma 70, 265–277.CrossRefGoogle Scholar
  5. Bedbrook, J.R., Jones, J., O’Dell, M., Thompson, R.D., and Flavell, R.B. (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.PubMedCrossRefGoogle Scholar
  6. Curtis, C.A., Lukaszewski, A.J., and Chrzasiek, M. (1991) Metaphase-I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in wheat. Genome 34, 553–560.CrossRefGoogle Scholar
  7. Delaney, D.E., Friebe, B., Hatchett, J.H., Gill, B.S., and Hulbert, S.H. (1995) Targeted mapping of rye chromatin in wheat by representational difference analysis. Genome 38, 458–466.PubMedCrossRefGoogle Scholar
  8. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X., and Gale, M.D. (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680.CrossRefGoogle Scholar
  9. Driscoll, C.J. and Sears, E.R. (1971) Individual additions of the chromosomes of ‘Imperial’ rye to wheat. Agron. Abstr., p. 6.Google Scholar
  10. Endo, T.R. (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79, 366–370.Google Scholar
  11. Endo, T.R. and Gill, B.S. (1984) Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum L. em Thell. Chromosoma 89, 361–369.CrossRefGoogle Scholar
  12. Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.Google Scholar
  13. Francki, M.G. (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44, 266–274.PubMedGoogle Scholar
  14. Friebe, B. and Gill, B.S. (1994) C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78, 1–5.Google Scholar
  15. Friebe, B. and Gill, BS. (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: P.P. Jauhar (Ed.) Methods of Genome Analysis in Plants. CRC Press, Boca Raton, FL, pp. 39–59.Google Scholar
  16. Friebe, B., Gill, B.S., Mukai, Y., and Maan, S.S. (1993) A noncompensating wheat-rye translocation maintained in perpetual monosomy in alloplasmic wheat. J. Hered. 84, 126–129.Google Scholar
  17. Friebe, B., Hatchett, J.H., Mukai, Y., Gill, B.S., and Sebesta, E.E. (1991) Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet. 83, 33–40.CrossRefGoogle Scholar
  18. Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S. (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87.CrossRefGoogle Scholar
  19. Friebe, B., Kynast, R.G., and Gill, B.S. (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res. 8, 501–511.PubMedCrossRefGoogle Scholar
  20. Friebe, B., Mukai, Y., Dhaliwal, H.S., Martin, T.J., and Gill, B.S. (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet. 81, 381–389.Google Scholar
  21. Friebe, B., Zhang, P., Linc, G., and Gill, B.S. (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 109, 293–297.Google Scholar
  22. Gill, B.S. (1993) Molecular cytogenetic analysis in wheat. Crop Sci. 33, 902–908.CrossRefGoogle Scholar
  23. Gill, B.S. and Chen, P.D. (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc. Natl. Acad. Sci. USA 84, 6800–6804.PubMedCrossRefGoogle Scholar
  24. Gill, B.S. and Friebe, B.R. (1998) Plant cytogenetics at the dawn of the 21st century. Curr. Opin. Pl. Biol. 1, 109–115.CrossRefGoogle Scholar
  25. Gill, B.S. and Kimber, G. 1974a. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci. USA 10, 1247–1249.Google Scholar
  26. Gill, B.S. and Kimber, G. 1974b. Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. USA 10, 4086–4090.Google Scholar
  27. Gill, B.S. and Sears, R.G. (1988) The current status of chromosome analysis in wheat. In: J.P. Gustafson and R. Appels (Eds.), Chromosome Structure and Function. Plenum Press, New York, pp. 299–321.Google Scholar
  28. Gill, B.S., Friebe, B., and Endo, T.R. (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34, 830–839.CrossRefGoogle Scholar
  29. Gill, B.S., Friebe, B., Raupp, W.J., Wilson, D.L., Cox, T.S., Brown-Guedira, G.L., Sears, R.S., and Fritz, A.K. (2006) Wheat Genetics Resource Center: the first 25 years. Adv. Agron. 85, 73–135.CrossRefGoogle Scholar
  30. Gill, B.S., Huang, L., Kuraparthy, V., Raupp, W.J., Wilson, D.L., and Friebe, B. (2008) Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Aus. J. Agric. Res. 59(3), 197–208.CrossRefGoogle Scholar
  31. Gill, K.S. and Gill, B.S. (1994) Mapping in the realm of polyploidy: The wheat model. BioEssays 16(11), 841–846.CrossRefGoogle Scholar
  32. Gill, K.S., Gill, B.S., and Endo, T.R. 1993. A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102, 374–381.CrossRefGoogle Scholar
  33. Gill, K.S., Gill, B.S., Endo, T.R., and Boyko, E.V. (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001–1012.Google Scholar
  34. Gill, K.S., Gill, B.S., Endo, T.R., and Taylor, T. (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144, 1883–1891.Google Scholar
  35. Huang, S.X., Sirikhachornkit, A., Su, X.J., Faris, J.D., Gill, B.S., Haselkorn, R.G., and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.PubMedCrossRefGoogle Scholar
  36. Jackson, S.A., Friebe, B., Gill, B.S., and Jiang, J. (1997) Structure of the rye midget chromosome analyzed by FISH and C-banding. Genome 40, 782–784.PubMedCrossRefGoogle Scholar
  37. Jackson, S.A., Zhang, P., Chen, W., Phillips, R., Friebe, B., Muthukrishnan, S., and Gill, B.S. (2001) High-resolution structural analysis of biollistic transgene integration into the nuclear genome of wheat. Theor. Appl. Genet. 103, 56–62.CrossRefGoogle Scholar
  38. Jiang, J. and Gill, B.S. (1994) Nonisotopic in situ hybridization and plant genome mapping, the first ten years. Genome 37, 717–725.PubMedCrossRefGoogle Scholar
  39. Jiang, J. and Gill, B.S. (2006) Current status and the future of flourescence in situ hybridization (FISH) in plant genome research. Genome 49, 1057–1068.PubMedCrossRefGoogle Scholar
  40. Jiang, J., Friebe, B., and Gill, B.S. (1994) Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212.CrossRefGoogle Scholar
  41. Kattermann, G. (1938) Über konstante, halmbehaarte Stämme aus Weizen-Roggen-Bastardierungen mit 2n=42 Chromosome. Z. Ind. Abst. Vererbungs1. 74, 354–375.CrossRefGoogle Scholar
  42. Kihara, H. (1919) Über cytologische Studien bei einige Getreidearten. I. Species-Bastarde des Weizens und Weizenroggen-Bastarde. Bot. Mag. Tokyo 32, 17–38.Google Scholar
  43. Kihara, H. (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Ag. Hort. (Tokyo) 19, 889–890.Google Scholar
  44. Kihara, H. (1954) Considerations on the distribution and evolution of Aegilops species based on the analyzer method. Cytologia 19, 336–357.CrossRefGoogle Scholar
  45. Kota, R.S., Gill, B.S., and Hulbert, S.H. (1994) Presence of various rye-specific repeated DNA sequences on the midget chromosome of rye. Genome 37, 619–624.PubMedCrossRefGoogle Scholar
  46. Lapitan, N.L.V., Sears, R.G., Rayburn, A.L., and Gill, B.S. (1986) Wheat-rye translocations. J. Hered. 77, 415–419.Google Scholar
  47. Lapitan, N.L.V., Gill, B.S., and Sears, R.G. (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Sci. 27, 682–687.CrossRefGoogle Scholar
  48. Lapitan, N.L.V., Sears, R.G., and Gill, B.S. (1988) Amplification of repeated DNA sequences in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 75, 381–388.CrossRefGoogle Scholar
  49. Li, W., Zhang, P., Fellers, J.P., Friebe, B., and Gill, B.S. (2004) Sequence composition, organization and evolution of the core Triticeae genome. The Plant J. 40, 500–511.CrossRefGoogle Scholar
  50. Lima-de-Faria, A. (1952) Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68.PubMedCrossRefGoogle Scholar
  51. Lukaszewski, A.J. (2000) Manipulation of the 1RS·1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 40, 216–225.CrossRefGoogle Scholar
  52. Lukaszewski, A.J., Rybka, K., Korzun, V., Malyshev, S.V., Lapinski, B., and Whitkus, R. (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47, 36–45.PubMedCrossRefGoogle Scholar
  53. Masoudi-Nejad, A., Nasuda, S., McIntosh, R.A., and Endo, T.R. (2002) Transfer of rye chromosome segments to wheat by a gametocidal gene. Chromosome Res. 10, 349–357.PubMedCrossRefGoogle Scholar
  54. McFadden, E.S. and Sears, E.R. (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89.PubMedGoogle Scholar
  55. Mickelson-Young, L., Endo, T.R., and Gill, B.S. (1995) A cytogenetic ladder-map of wheat homoeologous group-4 chromosomes. Theor. Appl. Genet. 90, 1007–1011.CrossRefGoogle Scholar
  56. Morris, R. and Sears, E.R. (1967) The cytogenetics of wheat and its relatives. In: K.S. Quisenberry and L.P. Reitz (Eds.), Wheat and Wheat Improvement. Amer. Soc. Agron., Madison, WI, pp. 19–87.Google Scholar
  57. Mukai, Y., Friebe, B., and Gill, B.S. (1992) Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn. J. Genet. 67, 71–83.CrossRefGoogle Scholar
  58. Mukai, Y., Friebe, B., Hatchett, J.H., Yamamoto, M., and Gill, B.S. (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102, 88–95.CrossRefGoogle Scholar
  59. Nagaki, K., Tsujimoto, H., and Sasakuma, T. (1998) Dynamics of tandem repetitive Afa-family sequence in Triticeae, wheat-related species. J. Mol. Evol. 47, 183–189.PubMedCrossRefGoogle Scholar
  60. Naranjo, T., Roca, P.G., Goicoechea, P.G., and Giraldez, R. (1987) Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882.CrossRefGoogle Scholar
  61. O’Mara, J.G. (1940) Cytogenetic studies on triticale. 1. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25, 410–418.Google Scholar
  62. Qi, L.L., Echalier, B., Friebe, B., and Gill, B.S. (2003) Molecular characterization of a set of wheat deletion stocks for using in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3, 39–55.PubMedGoogle Scholar
  63. Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., La Rota, C.M., Munkvold, J.D., Sorrells, S.F., Sorrells, M.E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H.S., Sandhu, D., Bondareva, S.N., Gill, K.S., Mahmoud, A.A., Ma, X-F., Miftahudin, Gustafson, J.P., Wennerlind, E.J., Nduati, V., Gonzalez-Hernandez, J.L., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Zhang, D.S., Nguyen, H.T., Choi, D-W., Close, T.J., McGuire, P.E., Qualset, C.O., and Gill, B.S. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.PubMedCrossRefGoogle Scholar
  64. Qi, L.L., Friebe, B., and Gill, B.S. (2002) A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Res. 10, 645–654.PubMedCrossRefGoogle Scholar
  65. Qi, L.L., Friebe, B., and Gill, B.S. (2005) Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat. Genome 48, 591–597.PubMedCrossRefGoogle Scholar
  66. Qi, L.L., Friebe, B., and Gill, B.S. (2006) Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome 49, 1628–1639.PubMedCrossRefGoogle Scholar
  67. Qi, L.L., Friebe, B., Zhang, P., and Gill, B.S. (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19.PubMedCrossRefGoogle Scholar
  68. Raupp, W.J. and Gill, B.S. (Eds.) (1995) Classical and Molecular Cytogenetic Analysis. Proceedings of a U.S.-Japan Symposium. Report 95–352-D, Kansas Agricultural Experiment Station, Manhattan, KS.Google Scholar
  69. Rayburn, A.L. and Gill, B.S. (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered. 76, 78–81.Google Scholar
  70. Rayburn, A.L. and Gill, B.S. (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4, 102–109.CrossRefGoogle Scholar
  71. Rogowsky, P.M., Sorrells, M.E., Shepherd, K.W., and Langridge, P. (1993) Characterisation of wheat-rye recombinants with RFLP and PCR probes. Theor. Appl. Genet. 83, 489–494.Google Scholar
  72. Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U.M., Calcagno, T., Cooke, R., Delseny, M., and Feuillet, C. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. The Plant Cell 20, 11–24.PubMedCrossRefGoogle Scholar
  73. Sakamura, T. (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-Arten. Bot. Mag. Tokoy 32, 151–154.Google Scholar
  74. Sax, K. (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7, 513–552.PubMedGoogle Scholar
  75. Schlegel, R. (1982) First evidence for rye-wheat additions. Biol. Zbl. 101, 641–646.Google Scholar
  76. Schlegel, R., Melz, G., and Mettin, D. (1986) Rye cytology, cytogenetics and genetics – Current status. Theor. Appl. Genet. 72, 721–734.CrossRefGoogle Scholar
  77. Sears, E.R. (1954) The aneuploids of common wheat. Mo. Agr. Exp. Sta. Res. Bull. 572, 1–59.Google Scholar
  78. Sears, E.R. (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9, 1–22.Google Scholar
  79. Sears, E.R. (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: R. Riley and K.R. Lewis (Eds.), Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, Scotland, pp. 29–45.Google Scholar
  80. Sears, E.R. (1969) Wheat cytogenetics. Ann. Rev. Genet. 3, 451–468.CrossRefGoogle Scholar
  81. Sears, E.R. (1972) In: Chromosome engineering in wheat. Stadler Symposia, University of Missouri, Columbia, 4, 23–38.Google Scholar
  82. Sears, E.R. (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: E.R. Sears and L.M.S. Sears (Eds.), Proceedings of the 4th International Wheat Genet Symposium. Agricultural Experiment Station, College of Agriculture, University of Missouri, Columbia, pp. 191–199.Google Scholar
  83. Sears, E.R. and Miller, T.E. (1985) The history of Chinese Spring wheat. Cereal Res. Commun. 13, 261–263.Google Scholar
  84. See, D.R., Brooks, S.A., Nelson, J.C., Brown-Guedira, G.L., Friebe, B., and Gill, B.S. (2006) Gene evolution at the ends of wheat chromosomes. Proc. Natl. Acad. Sci. USA 103, 4162–4167.PubMedCrossRefGoogle Scholar
  85. Sharma, H.C. and Gill, B.S. (1983) Current status of wide hybridization in wheat. Euphytica 32, 17 31.CrossRefGoogle Scholar
  86. Sorrells, M.E., La Rota, M., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., Munkvold, J.D., Miftahudin, Mahmoud, A., Ma, X., Gustafson, J.P., Qi, L.L., Echalier, B., Gill, B.S., Matthews, D.E., Lazo, G.R., Choa, S., Anderson, O.D., Edwards, H., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvorak, J., Zhang, D., Nguyen, H.T., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Hosssain, K., Kalavacharla, V., Kianian, S.F., Choi, D-W., Close, T.J., Dilbirligi, M., Gill, K.S., Steber, C., Walker-Simmons, M.K., McGuire, P.E., and Qualset, C.O. (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827.PubMedGoogle Scholar
  87. Sybenga, J. (1983) Rye chromosome nomenclature and homoeological relationships. Workshop report. Z. Pfanzenzucht. 90, 297–304.Google Scholar
  88. Vershinin, A.V., Schwarzacher, T., and Heslop-Harrison, P. (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell 7, 1823–1833.PubMedCrossRefGoogle Scholar
  89. Vrána, J., Kubaláková, M., Simková, H., Cíhalíková, J., Lysák, M.A., and Dolezel, J. (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041.PubMedGoogle Scholar
  90. Werner, J.E., Endo, T.R., and Gill, B.S. (1992) Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89, 11307–11311.PubMedCrossRefGoogle Scholar
  91. Zeller, F.J., Kimber, G., and Gill, B.S. (1977) The identification of rye trisomics by translocations and Giemsa staining. Chromosoma 62, 279–289.CrossRefGoogle Scholar
  92. Zhang, P., Friebe, B., Lukaszewski, A.J., and Gill, B.S. (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110, 335–344.PubMedCrossRefGoogle Scholar
  93. Zhang, P., Li, W, Fellers, J., Friebe, B., and Gill, B.S. (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112, 288–299.Google Scholar
  94. Zhang, P., Li, W., Friebe, B., and Gill, B.S. (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47, 979–987.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant PathologyKansas State UniversityManhattanUSA

Personalised recommendations