Skip to main content

Cytogenetic Analysis of Wheat and Rye Genomes

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

Cytogenetics is the correlated study of genetics and cytology. In cereals, five phases of cytogenetic research can be recognized: (i) meiotic pairing analysis of F1 hybrids; (ii) aneuploidy. (iii) molecular cytogenetics (C-banding and in situ hybridization); (iv) deletion bin mapping; and (v) flow cytogenetics. We review here the first four phases of cytogenetic research with special reference to chromosome analysis of wheat and rye. Meiotic pairing analysis revealed genomic relationships among diploid and polyploid species. Aneuploidy opened possibilities of chromosome/arm and comparative mapping. C-banding and in situ hybridization allowed rapid identification and analysis of heterochromatic and euchromatic components of wheat and rye chromosomes. The isolation of deletion stocks and their use to study the structure and function of the expressed portion of the wheat genome further revealed structural and functional differentiation of wheat chromosomes into proximal gene-poor/low recombination and distal gene-rich/high recombination compartments. The abovementioned structural and functional differentiation may have been driven by chromosome behavior at meiosis. As DNA sequence information becomes available and with the application of techniques such as Fiber FISH and others that close the gap between DNA level and chromosome level observations, we can truly begin to understand the biological meaning of the superimposed structural, functional, and behavioral differentiation and organization of cereal chromosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Lazo, G., Chao, S., Anderson, O.D., David, J., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J., Lapitan, N.L.V., Wennerlind, E.J., Nduati, V., Anderson, J.A., Sidhu, D., Gill, K.S., McGuire, P.E., Qualset, C.O., and Dvorak, J. (2003a). Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc. Natl. Acad. Sci. USA 100, 10836–10841.

    Google Scholar 

  • Akhunov, E.D., Goodyear, A.W., Geng, S., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., Lazo, G., Chao, S., Anderson, O.D., Linkiewicz, A.M., Dubcovsky, J., La Rota, M., Sorrells, M.E., Zhang, D., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Choi, D-W., Close, T.J., Dilbirligi, M., Gill, K.S., Walker-Simmons, M.K., Steber, C., McGuire, P.E., Qualset, C.O., and Dvorak, J. (2003b). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13, 753–763.

    Google Scholar 

  • Appels, R. (1982) The molecular cytology of wheat-rye hybrids. Int. Rev. Cytol. 80, 83–132.

    Google Scholar 

  • Appels, R., Dennis, E.S., Smyth, D.R., and Peacock, W.J. (1981) Two repeated DNA sequences from the heterochromatic regions of rye chromosomes. Chromosoma 70, 265–277.

    Article  Google Scholar 

  • Bedbrook, J.R., Jones, J., O’Dell, M., Thompson, R.D., and Flavell, R.B. (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, C.A., Lukaszewski, A.J., and Chrzasiek, M. (1991) Metaphase-I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in wheat. Genome 34, 553–560.

    Article  Google Scholar 

  • Delaney, D.E., Friebe, B., Hatchett, J.H., Gill, B.S., and Hulbert, S.H. (1995) Targeted mapping of rye chromatin in wheat by representational difference analysis. Genome 38, 458–466.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X., and Gale, M.D. (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680.

    Article  CAS  Google Scholar 

  • Driscoll, C.J. and Sears, E.R. (1971) Individual additions of the chromosomes of ‘Imperial’ rye to wheat. Agron. Abstr., p. 6.

    Google Scholar 

  • Endo, T.R. (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79, 366–370.

    Google Scholar 

  • Endo, T.R. and Gill, B.S. (1984) Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum L. em Thell. Chromosoma 89, 361–369.

    Article  Google Scholar 

  • Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.

    CAS  Google Scholar 

  • Francki, M.G. (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44, 266–274.

    PubMed  CAS  Google Scholar 

  • Friebe, B. and Gill, B.S. (1994) C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78, 1–5.

    Google Scholar 

  • Friebe, B. and Gill, BS. (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: P.P. Jauhar (Ed.) Methods of Genome Analysis in Plants. CRC Press, Boca Raton, FL, pp. 39–59.

    Google Scholar 

  • Friebe, B., Gill, B.S., Mukai, Y., and Maan, S.S. (1993) A noncompensating wheat-rye translocation maintained in perpetual monosomy in alloplasmic wheat. J. Hered. 84, 126–129.

    Google Scholar 

  • Friebe, B., Hatchett, J.H., Mukai, Y., Gill, B.S., and Sebesta, E.E. (1991) Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet. 83, 33–40.

    Article  Google Scholar 

  • Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S. (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87.

    Article  Google Scholar 

  • Friebe, B., Kynast, R.G., and Gill, B.S. (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res. 8, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Friebe, B., Mukai, Y., Dhaliwal, H.S., Martin, T.J., and Gill, B.S. (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet. 81, 381–389.

    Google Scholar 

  • Friebe, B., Zhang, P., Linc, G., and Gill, B.S. (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 109, 293–297.

    CAS  Google Scholar 

  • Gill, B.S. (1993) Molecular cytogenetic analysis in wheat. Crop Sci. 33, 902–908.

    Article  CAS  Google Scholar 

  • Gill, B.S. and Chen, P.D. (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc. Natl. Acad. Sci. USA 84, 6800–6804.

    Article  PubMed  CAS  Google Scholar 

  • Gill, B.S. and Friebe, B.R. (1998) Plant cytogenetics at the dawn of the 21st century. Curr. Opin. Pl. Biol. 1, 109–115.

    Article  CAS  Google Scholar 

  • Gill, B.S. and Kimber, G. 1974a. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci. USA 10, 1247–1249.

    Google Scholar 

  • Gill, B.S. and Kimber, G. 1974b. Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. USA 10, 4086–4090.

    Google Scholar 

  • Gill, B.S. and Sears, R.G. (1988) The current status of chromosome analysis in wheat. In: J.P. Gustafson and R. Appels (Eds.), Chromosome Structure and Function. Plenum Press, New York, pp. 299–321.

    Google Scholar 

  • Gill, B.S., Friebe, B., and Endo, T.R. (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34, 830–839.

    Article  Google Scholar 

  • Gill, B.S., Friebe, B., Raupp, W.J., Wilson, D.L., Cox, T.S., Brown-Guedira, G.L., Sears, R.S., and Fritz, A.K. (2006) Wheat Genetics Resource Center: the first 25 years. Adv. Agron. 85, 73–135.

    Article  Google Scholar 

  • Gill, B.S., Huang, L., Kuraparthy, V., Raupp, W.J., Wilson, D.L., and Friebe, B. (2008) Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Aus. J. Agric. Res. 59(3), 197–208.

    Article  CAS  Google Scholar 

  • Gill, K.S. and Gill, B.S. (1994) Mapping in the realm of polyploidy: The wheat model. BioEssays 16(11), 841–846.

    Article  CAS  Google Scholar 

  • Gill, K.S., Gill, B.S., and Endo, T.R. 1993. A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102, 374–381.

    Article  CAS  Google Scholar 

  • Gill, K.S., Gill, B.S., Endo, T.R., and Boyko, E.V. (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001–1012.

    Google Scholar 

  • Gill, K.S., Gill, B.S., Endo, T.R., and Taylor, T. (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144, 1883–1891.

    Google Scholar 

  • Huang, S.X., Sirikhachornkit, A., Su, X.J., Faris, J.D., Gill, B.S., Haselkorn, R.G., and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S.A., Friebe, B., Gill, B.S., and Jiang, J. (1997) Structure of the rye midget chromosome analyzed by FISH and C-banding. Genome 40, 782–784.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S.A., Zhang, P., Chen, W., Phillips, R., Friebe, B., Muthukrishnan, S., and Gill, B.S. (2001) High-resolution structural analysis of biollistic transgene integration into the nuclear genome of wheat. Theor. Appl. Genet. 103, 56–62.

    Article  CAS  Google Scholar 

  • Jiang, J. and Gill, B.S. (1994) Nonisotopic in situ hybridization and plant genome mapping, the first ten years. Genome 37, 717–725.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. and Gill, B.S. (2006) Current status and the future of flourescence in situ hybridization (FISH) in plant genome research. Genome 49, 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Friebe, B., and Gill, B.S. (1994) Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212.

    Article  Google Scholar 

  • Kattermann, G. (1938) Über konstante, halmbehaarte Stämme aus Weizen-Roggen-Bastardierungen mit 2n=42 Chromosome. Z. Ind. Abst. Vererbungs1. 74, 354–375.

    Article  Google Scholar 

  • Kihara, H. (1919) Über cytologische Studien bei einige Getreidearten. I. Species-Bastarde des Weizens und Weizenroggen-Bastarde. Bot. Mag. Tokyo 32, 17–38.

    Google Scholar 

  • Kihara, H. (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Ag. Hort. (Tokyo) 19, 889–890.

    Google Scholar 

  • Kihara, H. (1954) Considerations on the distribution and evolution of Aegilops species based on the analyzer method. Cytologia 19, 336–357.

    Article  Google Scholar 

  • Kota, R.S., Gill, B.S., and Hulbert, S.H. (1994) Presence of various rye-specific repeated DNA sequences on the midget chromosome of rye. Genome 37, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Lapitan, N.L.V., Sears, R.G., Rayburn, A.L., and Gill, B.S. (1986) Wheat-rye translocations. J. Hered. 77, 415–419.

    Google Scholar 

  • Lapitan, N.L.V., Gill, B.S., and Sears, R.G. (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Sci. 27, 682–687.

    Article  Google Scholar 

  • Lapitan, N.L.V., Sears, R.G., and Gill, B.S. (1988) Amplification of repeated DNA sequences in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 75, 381–388.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, P., Fellers, J.P., Friebe, B., and Gill, B.S. (2004) Sequence composition, organization and evolution of the core Triticeae genome. The Plant J. 40, 500–511.

    Article  CAS  Google Scholar 

  • Lima-de-Faria, A. (1952) Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68.

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski, A.J. (2000) Manipulation of the 1RS·1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 40, 216–225.

    Article  CAS  Google Scholar 

  • Lukaszewski, A.J., Rybka, K., Korzun, V., Malyshev, S.V., Lapinski, B., and Whitkus, R. (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47, 36–45.

    Article  PubMed  CAS  Google Scholar 

  • Masoudi-Nejad, A., Nasuda, S., McIntosh, R.A., and Endo, T.R. (2002) Transfer of rye chromosome segments to wheat by a gametocidal gene. Chromosome Res. 10, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, E.S. and Sears, E.R. (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89.

    PubMed  Google Scholar 

  • Mickelson-Young, L., Endo, T.R., and Gill, B.S. (1995) A cytogenetic ladder-map of wheat homoeologous group-4 chromosomes. Theor. Appl. Genet. 90, 1007–1011.

    Article  CAS  Google Scholar 

  • Morris, R. and Sears, E.R. (1967) The cytogenetics of wheat and its relatives. In: K.S. Quisenberry and L.P. Reitz (Eds.), Wheat and Wheat Improvement. Amer. Soc. Agron., Madison, WI, pp. 19–87.

    Google Scholar 

  • Mukai, Y., Friebe, B., and Gill, B.S. (1992) Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn. J. Genet. 67, 71–83.

    Article  Google Scholar 

  • Mukai, Y., Friebe, B., Hatchett, J.H., Yamamoto, M., and Gill, B.S. (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102, 88–95.

    Article  Google Scholar 

  • Nagaki, K., Tsujimoto, H., and Sasakuma, T. (1998) Dynamics of tandem repetitive Afa-family sequence in Triticeae, wheat-related species. J. Mol. Evol. 47, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Naranjo, T., Roca, P.G., Goicoechea, P.G., and Giraldez, R. (1987) Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882.

    Article  Google Scholar 

  • O’Mara, J.G. (1940) Cytogenetic studies on triticale. 1. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25, 410–418.

    Google Scholar 

  • Qi, L.L., Echalier, B., Friebe, B., and Gill, B.S. (2003) Molecular characterization of a set of wheat deletion stocks for using in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3, 39–55.

    PubMed  CAS  Google Scholar 

  • Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., La Rota, C.M., Munkvold, J.D., Sorrells, S.F., Sorrells, M.E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H.S., Sandhu, D., Bondareva, S.N., Gill, K.S., Mahmoud, A.A., Ma, X-F., Miftahudin, Gustafson, J.P., Wennerlind, E.J., Nduati, V., Gonzalez-Hernandez, J.L., Anderson, J.A., Peng, J.H., Lapitan, N.L.V., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Zhang, D.S., Nguyen, H.T., Choi, D-W., Close, T.J., McGuire, P.E., Qualset, C.O., and Gill, B.S. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L.L., Friebe, B., and Gill, B.S. (2002) A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Res. 10, 645–654.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L.L., Friebe, B., and Gill, B.S. (2005) Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat. Genome 48, 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L.L., Friebe, B., and Gill, B.S. (2006) Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome 49, 1628–1639.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L.L., Friebe, B., Zhang, P., and Gill, B.S. (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Raupp, W.J. and Gill, B.S. (Eds.) (1995) Classical and Molecular Cytogenetic Analysis. Proceedings of a U.S.-Japan Symposium. Report 95–352-D, Kansas Agricultural Experiment Station, Manhattan, KS.

    Google Scholar 

  • Rayburn, A.L. and Gill, B.S. (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered. 76, 78–81.

    Google Scholar 

  • Rayburn, A.L. and Gill, B.S. (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4, 102–109.

    Article  CAS  Google Scholar 

  • Rogowsky, P.M., Sorrells, M.E., Shepherd, K.W., and Langridge, P. (1993) Characterisation of wheat-rye recombinants with RFLP and PCR probes. Theor. Appl. Genet. 83, 489–494.

    Google Scholar 

  • Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U.M., Calcagno, T., Cooke, R., Delseny, M., and Feuillet, C. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. The Plant Cell 20, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Sakamura, T. (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-Arten. Bot. Mag. Tokoy 32, 151–154.

    Google Scholar 

  • Sax, K. (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7, 513–552.

    PubMed  CAS  Google Scholar 

  • Schlegel, R. (1982) First evidence for rye-wheat additions. Biol. Zbl. 101, 641–646.

    Google Scholar 

  • Schlegel, R., Melz, G., and Mettin, D. (1986) Rye cytology, cytogenetics and genetics – Current status. Theor. Appl. Genet. 72, 721–734.

    Article  Google Scholar 

  • Sears, E.R. (1954) The aneuploids of common wheat. Mo. Agr. Exp. Sta. Res. Bull. 572, 1–59.

    Google Scholar 

  • Sears, E.R. (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9, 1–22.

    Google Scholar 

  • Sears, E.R. (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: R. Riley and K.R. Lewis (Eds.), Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, Scotland, pp. 29–45.

    Google Scholar 

  • Sears, E.R. (1969) Wheat cytogenetics. Ann. Rev. Genet. 3, 451–468.

    Article  Google Scholar 

  • Sears, E.R. (1972) In: Chromosome engineering in wheat. Stadler Symposia, University of Missouri, Columbia, 4, 23–38.

    Google Scholar 

  • Sears, E.R. (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: E.R. Sears and L.M.S. Sears (Eds.), Proceedings of the 4th International Wheat Genet Symposium. Agricultural Experiment Station, College of Agriculture, University of Missouri, Columbia, pp. 191–199.

    Google Scholar 

  • Sears, E.R. and Miller, T.E. (1985) The history of Chinese Spring wheat. Cereal Res. Commun. 13, 261–263.

    Google Scholar 

  • See, D.R., Brooks, S.A., Nelson, J.C., Brown-Guedira, G.L., Friebe, B., and Gill, B.S. (2006) Gene evolution at the ends of wheat chromosomes. Proc. Natl. Acad. Sci. USA 103, 4162–4167.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H.C. and Gill, B.S. (1983) Current status of wide hybridization in wheat. Euphytica 32, 17 31.

    Article  Google Scholar 

  • Sorrells, M.E., La Rota, M., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., Munkvold, J.D., Miftahudin, Mahmoud, A., Ma, X., Gustafson, J.P., Qi, L.L., Echalier, B., Gill, B.S., Matthews, D.E., Lazo, G.R., Choa, S., Anderson, O.D., Edwards, H., Linkiewicz, A.M., Dubcovsky, J., Akhunov, E.D., Dvorak, J., Zhang, D., Nguyen, H.T., Peng, J., Lapitan, N.L.V., Gonzalez-Hernandez, J.L., Anderson, J.A., Hosssain, K., Kalavacharla, V., Kianian, S.F., Choi, D-W., Close, T.J., Dilbirligi, M., Gill, K.S., Steber, C., Walker-Simmons, M.K., McGuire, P.E., and Qualset, C.O. (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827.

    PubMed  CAS  Google Scholar 

  • Sybenga, J. (1983) Rye chromosome nomenclature and homoeological relationships. Workshop report. Z. Pfanzenzucht. 90, 297–304.

    Google Scholar 

  • Vershinin, A.V., Schwarzacher, T., and Heslop-Harrison, P. (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell 7, 1823–1833.

    Article  PubMed  CAS  Google Scholar 

  • Vrána, J., Kubaláková, M., Simková, H., Cíhalíková, J., Lysák, M.A., and Dolezel, J. (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041.

    PubMed  Google Scholar 

  • Werner, J.E., Endo, T.R., and Gill, B.S. (1992) Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89, 11307–11311.

    Article  PubMed  CAS  Google Scholar 

  • Zeller, F.J., Kimber, G., and Gill, B.S. (1977) The identification of rye trisomics by translocations and Giemsa staining. Chromosoma 62, 279–289.

    Article  Google Scholar 

  • Zhang, P., Friebe, B., Lukaszewski, A.J., and Gill, B.S. (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Li, W, Fellers, J., Friebe, B., and Gill, B.S. (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112, 288–299.

    Google Scholar 

  • Zhang, P., Li, W., Friebe, B., and Gill, B.S. (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47, 979–987.

    Google Scholar 

Download references

Acknowledgment

Research supported in part by grants from the USDA-CSREES, National Science Foundation, and the Kansas Wheat Commission. This is contribution 08-347-B from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram S. Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gill, B.S., Friebe, B. (2009). Cytogenetic Analysis of Wheat and Rye Genomes. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_4

Download citation

Publish with us

Policies and ethics