Domestication of the Triticeae in the Fertile Crescent

  • Benjamin Kilian
  • Hakan Özkan
  • Carlo Pozzi
  • Francesco Salamini
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


About 12,000 years ago, humans began the transition from hunter-gathering to a sedentary, agriculture-based society. From its origins in the Fertile Crescent, farming expanded throughout Europe, Asia and Africa, together with various domesticated plants and animals. Where, how and why agriculture originated is still debated. Progress has been made in understanding plant domestication in the last few years. New insights were obtained mainly due to (I) the use of comprehensive germplasm collections covering the whole distribution area for each species; (II) the comparison of many wild and domesticated accessions for each species; (III) the identification of the wild progenitor in the wild gene pool and its comparison with domesticate descendants; (IV) the use of molecular fingerprinting techniques at many loci and the access to new generation high-throughput sequencing technologies; (V) the identification and cloning of genes involved in domestication; and (VI) excavation campaigns.

This chapter reviews the recent knowledge on wheat, barley and rye domestication in the Fertile Crescent and covers several issues concerning the molecular knowledge of the effects induced by domestication and breeding of these crops.


Hexaploid Wheat Tetraploid Wheat Wild Barley Emmer Wheat Wild Emmer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sigi Effgen, Isabell Fuchs, Jutta Schütze, Charlotte Bulich, Marianne Haberscheid for excellent technical assistance and Margit Pasemann, Birgit Thron, Marianne Limpert, Elke Bohlscheid, Katiuscia Ceron for administration support during the last years. We are grateful to the MPIZ sequence facilities (ADIS) headed by Bernd Weisshaar. We thank Bill Martin, Maarten Koornneef, George Coupland, Moshe Feldman, Andrea Brandolini, Klaus Schmidt (DAI) and Andreas Graner for valuable suggestions. This research was supported by the Deutsche Forschungsgemeinschaft SPP 1127.


  1. Aaronsohn, A. and Schweinfurth, G. (1906) Die Auffindung des wilden Emmers (Triticum dicoccum) in Nordpalästina. Altneuland Monatsschrift für die Wirtschaft. Erschliessung Palästinas 7–8, 213–220.Google Scholar
  2. Abbo, S., Gopher, A., Peleg, Z., Saranga, Y., Fahima, T., Salamini, F. and Lev-Yadun, S. (2006) The ripples of “The Big (agricultural) Bang”: The spread of early wheat cultivation. Genome 49, 861–863.PubMedCrossRefGoogle Scholar
  3. Abdel-Ghani, A.H., Parzies, H.K., Omary, A. and Geiger, H.H. (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor. Appl. Genet. 109, 588–595.PubMedCrossRefGoogle Scholar
  4. Åberg, E. (1940) The taxonomy and phylogeny of Hordeum L. sect. Critesion Ands. with special reference to Tibetian barleys. Symb. Bot. Upsaliensis 2, 1–156.Google Scholar
  5. Allaby, R.G. and Brown, T.A. (2003) AFLP data and the origins of domesticated crops. Genome 46, 448–453.PubMedCrossRefGoogle Scholar
  6. Allaby, R.G. and Brwon, T.A. (2004) Reply to the comment by Salamini et al. on “AFLP data and the origins of domesticated crops”. Genome 47, 621–622.CrossRefGoogle Scholar
  7. Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H. and Koornneef, M. (2003) Analysis of natural variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711–729.PubMedGoogle Scholar
  8. Ammerman, A.J. and Cavalli-Sforza, L.L. (1984) The neolithic transition and the genetics of populations in Europe. Princeton, Princeton University Press.Google Scholar
  9. Araki, E., Miura, H. and Sawada, S. (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98, 977–984.CrossRefGoogle Scholar
  10. Atsmon, D. and Jacobs, E. (1977) A newly bred ‘Gigas’ form of bread wheat (Triticum aestivum L.): morphological features and thermo-photoperiodic responses. Crop Sci. 17, 31–35.CrossRefGoogle Scholar
  11. Azhaguvel, P., Vidya-Saraswathi, D. and Komatsuda, T. (2006) High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated × wild barley (Hordeum vulgare). Plant Sci. 170, 1087–1094.CrossRefGoogle Scholar
  12. Azhaguvel, P. and Komatsuda, T. (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann. Bot. 100, 1009–1015.PubMedCrossRefGoogle Scholar
  13. Babb, S. and Muehlbauer, G.J. (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor. Appl. Genet. 106, 846–857.PubMedGoogle Scholar
  14. Badr, A., Müller, K., Schäfer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W. and Salamini, F. (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol. 17, 499–510.PubMedGoogle Scholar
  15. Bar-Yosef, O. (2002) The Natufian culture and the early Neolithic – Social and economic trends. In: P. Bellwood, C. Renfrew (Eds.), Examining the farming/language dispersal hyphothesis. McDonald Institute for Archaeological Research, Cambridge, pp. 113–126.Google Scholar
  16. Bekele, E. (1983) A differential rate of regional distribution of barley flavonoid patterns in Ethiopia, and a view on the center of origin of barley. Hereditas 98, 269–280.PubMedCrossRefGoogle Scholar
  17. Bhave, M. and Morris, C.F. (2008a) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol. Biol. 66, 221–231.Google Scholar
  18. Bhave, M. and Morris, C.F. (2008b) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol. Biol. 66, 205–219.Google Scholar
  19. Blatter, R.H.E., Jacomet, S. and Schlumbaum, A. (2004) About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor. Appl. Genet. 108, 360–367.PubMedCrossRefGoogle Scholar
  20. Börner, A. and Worland, A. (Eds.) (1996) Selected papers from the EWAC-conference: cereal aneuploids for genetic analysis and molecular techniques. Euphytica 89, 1–157.Google Scholar
  21. Börner, A., Korzun, V. and Worland, A.J. (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100, 245–248.CrossRefGoogle Scholar
  22. Bothmer von, R., Hintum van, T., Knüpffer, H. and Sato, K. (Eds.), (2003) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam.Google Scholar
  23. Braidwood, R.J. and Braidwood, L. (1950) Jarmo: A village of early farmers in Iraq. Antiquity 24, 189–195.Google Scholar
  24. Braidwood, R.J., Cambel, H. and Watson, P.J. (1969) Prehistoric investigations in southwestern Turkey. Science 164, 1275–1276.PubMedCrossRefGoogle Scholar
  25. Braidwood, R.J. (1972) Prehistoric investigations in southwestern Asia. Proc. Am. Phil. Soc. 116, 310–320.Google Scholar
  26. Braidwood, L.S., Braidwood, R.J., Howe, B., Reed, C.A. and Watson, P.J. (1983) Prehistoric archeology along the Zagros flanks. Oriental Institute Publication 105, University of Chicago Press, Chicago.Google Scholar
  27. Brandolini, A., Vaccino, P., Boggini, G., Ozkan, H., Kilian, B. and Salamini, F. (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49, 297–305.PubMedCrossRefGoogle Scholar
  28. Breasted, J.H. (1938) The conquest of civilization. Literary Guild of America, New York.Google Scholar
  29. Breseghello, F. and Sorrells, M.E. (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172, 1165–1177.PubMedCrossRefGoogle Scholar
  30. Bullrich, L., Appendino, M.L., Tranquilli, G., Lewis, S. and Dubcovsky, J. (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105, 585–593.PubMedCrossRefGoogle Scholar
  31. Bushuk, W. (2001) History, world distribution, production, and marketing. In: W. Bushuk (Ed.), Rye: Production, Chemistry, and Technology. American Association of Cereal Chemists, St Paul, Minnesota.Google Scholar
  32. Cai, W. and Morishima, H. (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104, 1217–1228.PubMedCrossRefGoogle Scholar
  33. Caldwell, K.S., Russell, J., Langridge, P. and Powell, W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172, 557–567.PubMedCrossRefGoogle Scholar
  34. Campbell, B., Baenziger, P.S., Gill, K.S., Eskridge, K.M., Budak, H., Erayman, M., Dweikat, I. and Yen, Y. (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci. 43, 1493–1505.CrossRefGoogle Scholar
  35. Candolle de, A. (1883) (en fait, octobre 1882). Origine des plantes cultivées. Germer Baillière, Paris.Google Scholar
  36. Cao, W., Scoles, G.J. and Hucl, P. (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94, 119–124.CrossRefGoogle Scholar
  37. Casas, A.M., Yahiaoui, S., Ciudad, F. and Igartua, E. (2005) Distribution of MWG699 polymorphism in Spanish European barleys. Genome 48, 41–45.PubMedCrossRefGoogle Scholar
  38. Chandler, P.M., Marion-Poll, A., Ellis, M. and Gubler, F. (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol. 129, 181–190.PubMedCrossRefGoogle Scholar
  39. Chantret, N., Cenci, A., Sabot, F., Anderson, O. and Dubcovsky, J. (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol. Genet. Genomics 271, 377–386.PubMedCrossRefGoogle Scholar
  40. Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Sourdille, P., Joudrier, P., Gautier, M.-F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.PubMedCrossRefGoogle Scholar
  41. Chen, Q.F., Yen, C. and Yang, J.L. (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet. Res. Crop. Evol. 45, 21–25.Google Scholar
  42. Chikmawati, T., Skovmand, B. and Gustafson, J.P. (2005) Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphism. Genome 48, 792–801.PubMedCrossRefGoogle Scholar
  43. Childe, V.G. (1928) The most ancient east: The oriental prelude to European prehistory. Kegan Paul, Trench, Trubner, London.Google Scholar
  44. Childe, V.G. (1936) Man makes himself. Watts, London.Google Scholar
  45. Cho, C., Kyu, H.O. and Lee, S.H. (1993) Origin, dissemination and utilization of semi-dwarf genes in Korea In: T. Miller, R.M.D. Koebner (Eds.), Proc. VII Int. Wheat Genetic Symp. Bath Press, Bath, pp. 223–231.Google Scholar
  46. Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A. and Greenland, A.J. (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exper. Bot. 58, 1231–1244.CrossRefGoogle Scholar
  47. Damania, A.B. (1998) Diversity of major cultivated plants domesticated in the Near East. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 51–64.Google Scholar
  48. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E. Fowler, B. and Sarhan, F. (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860.Google Scholar
  49. Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. John Murray, London.Google Scholar
  50. Darwin, C. (1868) The variation of animals and plants under domestication. John Murray, London.Google Scholar
  51. Davies, M.S. and Hillman, G.C. (1992) Domestication of cereals. In: G.P. Chapman, (Ed.), Grass evolution and domestication. Cambridge University Press, Cambridge, pp. 199–244.Google Scholar
  52. Diamond, J. and Belwood, P. (2003) Farmers and their languages: The first expansions. Science 300, 597–603.PubMedCrossRefGoogle Scholar
  53. Doebley, J.F., Gaut, B.S. and Smith, B.D. (2006) The molecular genetics of crop domestication. Cell 127, 1309–1321.PubMedCrossRefGoogle Scholar
  54. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., Udaczin, R.A. and Jakubziner, M.M. (1979) Wheat. vol. 1. In: V.F. Dorofeev, O.N. Korovina, (Eds.), Flora of Cultivated Plants. Leningrad, Russia.Google Scholar
  55. Dubcovsky, J., Chen, C. and Yan, L. (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol. Breeding 15, 395–407.CrossRefGoogle Scholar
  56. Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A. and Yan, L. (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480.PubMedCrossRefGoogle Scholar
  57. Dubcovsky, J. and Dvorak, J. (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866.PubMedCrossRefGoogle Scholar
  58. Duggan, B., Richards, R.A. and Tsuyuzaki, H. (2002) Environmental effects on the expression of the tiller inhibition (tin) gene in wheat. Funct. Plant. Biol. 29, 45–53.CrossRefGoogle Scholar
  59. Dunford, R.P., Griffiths, S., Christodoulou, V. and Laurie, D.A. (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110, 925–931.PubMedCrossRefGoogle Scholar
  60. Dvorak, J. and Zhang, H.B. (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci. USA 87, 9640–9644.PubMedCrossRefGoogle Scholar
  61. Dvorak, J. and Luo, M.C. (2001) Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools. In: P.D.S. Caligari, P.E. Brandham (Eds.), The Linnean, Special Issue No 3. Wheat Taxonomy: the legacy of John Percival. Academic Press, London, pp. 127–136.Google Scholar
  62. Dvorak, J., Diterlizzi, P., Zhang, H.B. and Resta, P. (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36, 21–31.PubMedCrossRefGoogle Scholar
  63. Dvorak, J., Luo, M.C. and Yang, Z.L. (1998a) Genetic evidence on the origin of Triticum aestivum L. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 235–251.Google Scholar
  64. Dvorak, J., Luo, M.C., Yang, Z.L. and Zhang, H.B. (1998b) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 67, 657–670.Google Scholar
  65. Dvorak, J. and Akhunov, E. (2005) Tempos of gene locus delations and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17, 323–332.CrossRefGoogle Scholar
  66. Eastmond, P.J. and Jones, R.L. (2005) Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB. Plant J. 44, 483–493.PubMedCrossRefGoogle Scholar
  67. Elias, E.M., Steiger, K.D. and Cantrell, R.G. (1996) Evaluation of lines derived from wild emmer chromosome substitutions II. Agronomic traits. Crop Sci. 36, 228–233.CrossRefGoogle Scholar
  68. Ellis, M., Rebetzke, G.J., Azanza, F., Richards, R.A. and Spielmeyer, W. (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111, 423–430.PubMedCrossRefGoogle Scholar
  69. Faris, J. and Gill, B.S. (2002) Genomic targeting and high resolution mapping of the domestication gene Q in wheat. Genome 45, 706–718.PubMedCrossRefGoogle Scholar
  70. Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.PubMedGoogle Scholar
  71. Faure, S., Higgins, J., Turner, A. and Laurie, D.A. (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599–609.PubMedCrossRefGoogle Scholar
  72. Feldman, M. (1966) Identification of unpaired chromosomes in F1 hybrids involving Triticum aestivum and T. timopheevii. Can. J. Genet. Cytol. 8, 144–151.Google Scholar
  73. Fiedler, H. and Leitner, U. (2000) Alexander von Humboldts Schriften. Bibliographie der selbständig erschienenen Werke. (= Beiträge zur Alexander-von-Humboldt-Forschung; 20). Berlin.Google Scholar
  74. Frederiksen, S. and Petersen, G. (1997) Morphometrical analyses of Secale (Triticeae, Poaceae). Nordic J. Bot. 17, 185–197.CrossRefGoogle Scholar
  75. Frederiksen, S. and Petersen, G. (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nordic J. Bot. 18, 399–420.CrossRefGoogle Scholar
  76. Fu, D., Szücs, P., Yan, L., Helguera, M., Skinner, J.S., Zitzewitz von, J., Hayes, P.M. and Dubcovsky, J. (2005) Large deletions within the first intron in VRN1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics 273, 54–65.CrossRefGoogle Scholar
  77. Gandilian, P.A. (1972) On wild growing Triticum species of Armenian SSR. Bot. Zhur. 57, 173–181.Google Scholar
  78. Gautier, M., Aleman, M.E., Guirao, A., Marion, D. and Joudrier, P. (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25, 43–57.PubMedCrossRefGoogle Scholar
  79. Gautier, M.F., Cosson, P., Guirao, A., Alary, R. and Joudrier, P. (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci. 153, 81–91.CrossRefGoogle Scholar
  80. Gebel, H.G. (2004) There was no centre: the polycentric evolution of the Near Eastern Neolithic. Neo-lithics 1/04, 28–32.Google Scholar
  81. Gepts, P. (1998) What can molecular markers tell us about the process of domestication in common bean? In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 198–209.Google Scholar
  82. Giles, R.J. and Brown, T.A. (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112, 1563–1572.PubMedCrossRefGoogle Scholar
  83. Giroux, M. and Morris, C.G. (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 95, 6262–6266.PubMedCrossRefGoogle Scholar
  84. Giroux, M.J., Talbert, L., Habernicht, D.K., Lanning, S., Hempill, A. and Martin, J.M. (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40, 370–374.CrossRefGoogle Scholar
  85. Goldberg, S.M., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., Li, K., Rogers, Y.H., Strausberg, R., Sutton, G., Tallon, L., Thomas, T., Venter, E., Frazier, M. and Venter, J.C. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. USA 103, 11240–11245.PubMedCrossRefGoogle Scholar
  86. Gollan, P., Smith, K. and Bhave, M. (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J. Cereal Sci. 45, 184–198.CrossRefGoogle Scholar
  87. Goncharov, N.P., Golovnina, K.A., Kilian, B., Glushkov, S., Blinov, A. and Shumny, V.K. (2008) Evolutionary history of wheats - the main cereal of mankind. In: N. Dobretsov, N. Kolchanov, A. Rozanov, G. Zavarzin (Eds.), Biosphere Origin and Evolution. Springer, pp. 407–419.Google Scholar
  88. Griffiths, S., Dunford, R.P., Coupland, G. and Laurie DA. (2003) The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol 131, 1855–1867.PubMedCrossRefGoogle Scholar
  89. Gu, Y.Q., Anderson, O.D., Londeorë, C.F., Kong, X., Chibbar, R.N. and Lazo, G.R. (2003) Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46, 1084–1097.PubMedCrossRefGoogle Scholar
  90. Hamblin, M.T., Casa, A.M., Sun, H., Murray, S.C., Paterson, A.H., Aquadro, C.F. and Kresovich, S. (2006) Challenges of detecting directional selection after a bottleneck: Lessons from Sorghum bicolor. Genetics 173, 953–964.PubMedCrossRefGoogle Scholar
  91. Hammer, K. (1984) Das Domestikationssyndrom. Kulturpflanze 32, 11–34.CrossRefGoogle Scholar
  92. Hammer, K., Skolimowska, E. and Knüpffer, H. (1987) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Secale L. Kulturpflanze. 35, 135–177.CrossRefGoogle Scholar
  93. Hammer, K. (1990) Breeding system and phylogenetic relationships in Secale L. Biol. Zentralbl. 109, 45–50.Google Scholar
  94. Harlan, J.R. and Zohary, D. (1966) Distribution of wild wheats and barley. Science 153, 1074–1080.PubMedCrossRefGoogle Scholar
  95. Harlan, J.R. (1971) Agricultural origins: Centers and noncenters. Science 174, 468–474.PubMedCrossRefGoogle Scholar
  96. Harlan, J.R. (1975) Our vanishing genetic resources. Science 188, 618–621.CrossRefGoogle Scholar
  97. Harlan, J.R. (1995) The living fields: Our agricultural heritage. Cambridge University Press, Cambridge.Google Scholar
  98. Harris, D.R. (1998) The spread of neolithic agriculture from the Levant to western central Asia. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 65–82.Google Scholar
  99. Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C., Hochu, I., Poirier, S., Santoni, S., Glémin, S. and David, J. (2007) Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517.PubMedCrossRefGoogle Scholar
  100. Hawkes, J.G. (1998) Back to Vavilov: Why were plants domesticated in some areas and not in others? In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 5–8.Google Scholar
  101. Hedden, P. (2003) The genes of the Green Revolution. Trends Genet. 19, 5–9.PubMedCrossRefGoogle Scholar
  102. Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B. and Salamini, F. (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278, 1312–1314.CrossRefGoogle Scholar
  103. Hillman, G.C. (1978) On the origins of domestic rye – Secale cereale: the finds from Aceramic Can Hasan III in Turkey. Anatolian Stud. 28, 157–174.CrossRefGoogle Scholar
  104. Hillman, G.C., Colledge, S.M. and Harris, D.R. (1989) Plant-food economy during the Epipalaeolithic period at Tell Abu Hureyra, Syria: Dietary diversity, seasonality, and modes of exploitation. In: D.R. Harris, G.C. Hillman (Eds.), Foraging and farming: the evolution of plant exploitation. Unwin, London, pp. 240–268.Google Scholar
  105. Hillman, G. and Davies, S. (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehistory 4, 157–222.CrossRefGoogle Scholar
  106. Hillman, G. (2000) Plant food economy of Abu Hureyra. In: A. Moore, G. Hillman, T. Legge (Eds.), Village on the Euphrates, from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp. 372–392.Google Scholar
  107. Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.PubMedCrossRefGoogle Scholar
  108. Humboldt von, A. (1806) Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Cotta’sche Buchhandlung, Tübingen.Google Scholar
  109. Iqbal, N., Reader, S.M., Caligari, P.D.S. and Miller, T.E. (2000) The production and characterization of recombination between chromosome 3 N of Aegilops uniaristata and chromosome 3A of wheat. Heredity 84, 487–492.PubMedCrossRefGoogle Scholar
  110. Jaaska, V. (1981) Aspartate aminotransferase and alcohol dehydrogenase isozymes: Intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst. Evol. 137, 259–273.CrossRefGoogle Scholar
  111. Jaaska, V. (1995) Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat. In: A.B. Damania (Ed.), Biodiversity and wheat improvement. John Wiley, Chichester. pp. 247–257.Google Scholar
  112. Jaaska, V. (1998) On the origin and in statu nascendi domestication of rye and barley: A review. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 210–217.Google Scholar
  113. Jantasuriyarat, C., Vales, M.I., Watson, C.J.W. and Riera-Lizarazu, O. (2004) Identifcation and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 261–273.PubMedCrossRefGoogle Scholar
  114. Johnson, B.L. (1975) Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17, 21–39.Google Scholar
  115. Johnson, B.L. and Dhaliwal, H.S. (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am. J. Bot. 63, 1088–1094.CrossRefGoogle Scholar
  116. Jones, M.K. (2004) Between Fertile Crescents: Minor grain crops and agricultural origins. In: M.K. Jones (Ed.), Traces of ancestry: studies in honour of Colin Renfrew. McDonald Institute for Archaeological Research, Cambridge, pp. 127–135.Google Scholar
  117. Kanazin, V., Talbert, H., See, D., DeCamp, P., Nevo, E. and Blake, T. (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol. Biol. 48, 529–537.PubMedCrossRefGoogle Scholar
  118. Kan, Y., Wan, Y., Beaudoin, F., Leader, D.J., Edwards, K., Poole, R., Wang, D. Mitchell, R.A.C. and Shewry, P.R. (2006) Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J. Cereal Sci. 44, 75–85.CrossRefGoogle Scholar
  119. Kandemir, N., Yildirim, A., Kudrna, D.A., Hayes, P.M. and Kleinhofs, A. (2004) Marker assisted genetic analysis of non-brittle rachis trait in barley. Hereditas 141, 272–277.PubMedCrossRefGoogle Scholar
  120. Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J., Limin, A.E., Fowler, D.B. and Sarhan, F. (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol. 138, 2354–2363.PubMedCrossRefGoogle Scholar
  121. Karsai, I., Szücs, P., Meszaros, K., Filichkina, T., Hayes, P.M., Skinner, J.S., Lang, L. and Bedö, Z. (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor. Appl. Genet. 110, 1458–1466.PubMedCrossRefGoogle Scholar
  122. Kato, K., Miura, H., Akiyama, M., Kuroshima, M. and Sawada, S. (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101, 91–95.CrossRefGoogle Scholar
  123. Kato, K., Miura, H. and Sawada, S. (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 101, 933–943.Google Scholar
  124. Kato, K., Sonokawa, R., Miura, H. and Sawada, S. (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed. 122, 489–492.CrossRefGoogle Scholar
  125. Kerber, E.R. (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143, 253–255.PubMedCrossRefGoogle Scholar
  126. Kerber, E.R. and Dyck, P.L. (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11, 639–647.Google Scholar
  127. Kerber, E.R. and Rowland, G.G. (1974) Origin of the free threshing character in hexaploid wheat. Can. J. Genet. Cytol. 16, 145–154.Google Scholar
  128. Kihara, H. (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Univ. Kyoto Ser. B 1, 1–200.Google Scholar
  129. Kihara, H. (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. (Tokyo) 19, 13–14.Google Scholar
  130. Kihara, H., Yamashita, H. and Tanaka, M. (1965) Morphological, physiological, genetical, and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, Iran. Results of the Kyoto University scientific expedition to the Korakoram and Hindukush in 1955. In: K. Yamashita (Ed.), Cultivated plants and their relatives. Kyoto. pp. 4–41.Google Scholar
  131. Kilian, B., Özkan, H., Kohl, J., Haeseler von, A., Barale, F., Deusch, O., Brandolini, A., Yucel, C., Martin, W. and Salamini, F. (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol. Gen. Genom. 276, 230–241.CrossRefGoogle Scholar
  132. Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W. and Salamini, F. (2007a) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24, 217–227.Google Scholar
  133. Kilian, B., Özkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F. and Martin, W. (2007b) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol. Biol. Evol. 24, 2657–2668.Google Scholar
  134. Kislev, M.E., Nadel, D. and Carmi, I. (1992) Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee. Isr. Rev. Palaeobot. Palynol. 73, 161–166.CrossRefGoogle Scholar
  135. Kislev, M.E. (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Israel J. Bot. 28, 95–107.Google Scholar
  136. Kislev, M.E. (1984) Botanical evidence for ancient naked wheats in the Near East. In: W. von Zeist and W.A. Casparie (Eds.), Plants and Ancient Man. Balkema, Rotterdam, Boston, pp. 141–152.Google Scholar
  137. Kislev, M. (2002) Origin of annual crops by agro-evolution. Isr. J. Plant Sci. 50, 85–88.Google Scholar
  138. Kolodinska Brantestam, A., Bothmer von, R., Dayteg, C., Rashal, I., Tuvesson, S. and Weibull, J. (2004) Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic origin. Hereditas 141, 186–192.PubMedCrossRefGoogle Scholar
  139. Komatsuda, T., Maxim, P., Senthil, N. and Mano, Y. (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor. Appl. Genet. 109, 986–995.PubMedCrossRefGoogle Scholar
  140. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.PubMedCrossRefGoogle Scholar
  141. Kong, X.Y., Gu, Y.Q., You, F.M., Dubcovsky, J. and Anderson, O.D. (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allpolyploid wheat. Plant Mol. Biol. 54, 55–69.PubMedCrossRefGoogle Scholar
  142. Koti, K., Karsai, I., Szücs, P., Horvath, C.S., Meszaros, K., Kiss, G.B., Bedö, Z. and Hayes, P.M. (2006) Validation of the two-gene epistatic model for vernalization response in a winter × spring barley cross. Euphytica 152, 17–24.CrossRefGoogle Scholar
  143. Kranz, A.R. (1963) Die anatomischen, ökologischen und genetischen Grundlagen der Ährenbrüchigkeit des Roggens. Beitr. Biol. Pflanzen. 38, 445–471.Google Scholar
  144. Kuckuck, H. and Schiemann, E. (1957) Über das Vorkommen von Speltz und Emmer (Triticum spelta L. und T. dicoccum Schubl.) im Iran. Z. Pflanzenzüchtg. 38, 383–396.Google Scholar
  145. Kuckuck, H. (1959) Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z. Pflanzenzüchtg. 41, 205–226.Google Scholar
  146. Kuraparthy, V., Sood, S. Chunneja, P., Dhaliwal, H.S. and Gill, B.S. (2007) Identification and mapping of tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. 114, 285–294.PubMedCrossRefGoogle Scholar
  147. Kuraparthy, V., Sood, S. and Gill, B.S. (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct. Integr. Genomics 8, 33–42.PubMedCrossRefGoogle Scholar
  148. Ladizinsky, G. (1985) Founder effect in crop-plant evolution. Econ. Bot. 39, 191–199.CrossRefGoogle Scholar
  149. Laurie, D., Pratchett, N., Bezant, J.H. and Snape, J.W. (1995) RFLP mapping of five major genes and eight quantitative traits loci controlling flowering time in a winter × spring barley (Hordeum vulgare) cross. Genome 38, 575–585.PubMedCrossRefGoogle Scholar
  150. Lev-Yadun, S., Gopher, A. and Abbo, S. (2000) The cradle of agriculture. Science 288, 1602–1603.PubMedCrossRefGoogle Scholar
  151. Li, W. and Gill, B.S. (2006) Multiple genetic pathways for seed shattering in the grasses. Func. Integr. Genom. 6, 300–309.CrossRefGoogle Scholar
  152. Li, W., Huang, L. and Gill, B.S. (2008) Recurrent deletions of puroindoline genes at the grain Hardness locus in four independent lineages of polyploidy wheat. Pl. Physiol. 146, 200–212.CrossRefGoogle Scholar
  153. Lichter, C. (Ed.) (2007) Die ältesten Monumente der Menschheit. Badisches Landesmuseum Karlsruhe. Theiss Verlag, Stuttgart.Google Scholar
  154. Londo, J.P., Chiang, Y.C., Hung, K.H., Chiang, T.Y. and Schaal, B. (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 103, 9578–9583.PubMedCrossRefGoogle Scholar
  155. Luo, M.C., Yang, Z.L. and Dvorak, J. (2000) The Q locus of Iranian and European spelt wheat. Theor. Appl. Genet. 100, 602–606.Google Scholar
  156. Luo, M., Yang, Z.L., Kota, R.S. and Dvorak, J. (2000) Recombination of chromosomes 3Am and 5Am of wheat: the distribution of recombination across chromosomes. Genetics 154, 1301–1308.PubMedGoogle Scholar
  157. Luo, M.C., Yang, Z.L., You, F.M., Kawahara, T., Waines, J.G. and Dvorak, J. (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 114, 947–959.PubMedCrossRefGoogle Scholar
  158. Massa, A.N. and Morris (2006) Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J. Mol. Evol. 63, 526–536.PubMedCrossRefGoogle Scholar
  159. Matsuoka, Y. and Nasuda, S. (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: An empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109, 1710–1717.PubMedCrossRefGoogle Scholar
  160. MacKey, J. (1954) Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40, 65–180.Google Scholar
  161. McKey, J. (1966) Species relationships in Triticum. Hereditas 2, 237–276.Google Scholar
  162. McFadden, E.S. and Sears, E.R. (1946) The origin of Triticum spelta and its free-theshing hexaploid relatives. J. Hered. 37, 81–89, 107–116.PubMedGoogle Scholar
  163. Molina-Cano, J.L., Fra-Mon, P., Salcedo, G., Aragoncillo, C., Roca de Togores, F. and Garcia-Olmedo, F. (1987) Morocco as a possible domestication center for barley: Biochemical and agromorphological evidence. Theor. Appl. Genet. 73, 531–536.CrossRefGoogle Scholar
  164. Molina-Cano, J.L., Russell, J.R., Moralejo, M.A., Escacena, J.L., Arias, G. and Powell, W. (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor. Appl. Genet. 110, 613–619.PubMedCrossRefGoogle Scholar
  165. Mori, N., Liu, Y.G. and Tsunewaki, K. (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor. Appl. Genet. 90, 129–134.CrossRefGoogle Scholar
  166. Mori, N., Ishii, T., Ishido, T., Hirosawa, S., Watatani, H., Kawahara, T., Nesbitt, M., Belay, G., Takumi, S., Ogihara, Y. and Nakamura, C. (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. 10th International Wheat Genetics Symposium. Paestum, pp. 25–28.Google Scholar
  167. Morrell, P.L. and Clegg, M.T. (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. USA 104, 3289–3294.PubMedCrossRefGoogle Scholar
  168. Morris, C.F. (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647.PubMedCrossRefGoogle Scholar
  169. Muramatsu, M. (1963) Dosage effect of the spelta gene q of hexaploid wheeat. Genetics 48, 469–482.PubMedGoogle Scholar
  170. Muramatsu, M. (1985) Spike type in two cultivars of Triticum dicoccum with the spelta gene q compared with the Q-bearing variety liguliforme. Jpn. J. Breed. 35, 255–267.Google Scholar
  171. Muramatsu, M. (1986) The vulgare super gene Q: ist universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can. J. Genet. Cytol. 28, 30–41.Google Scholar
  172. Nadel, D. (2002) Ohalo II: a 23,000-Year-Old Fisher-Hunter-Gatherer’s Camp on the Sea of Galilee. University of Haifa, Haifa.Google Scholar
  173. Nalam, V., Vales, M.I., Watson, C.J.W., Kianian, S.F. and Riera-Lizarazu, O. (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum). Theor. Appl. Genet. 112, 373–381.PubMedCrossRefGoogle Scholar
  174. Nalam, V., Vales, M.I., Watson, C.J.W., Johnson, E.B. and Riera-Lizarazu, O. (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and thresability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 116, 135–145.PubMedCrossRefGoogle Scholar
  175. Nesbitt, M. (1995) Plants and people in ancient Anatolia. Biblical Archaeologist. 58, 68–81.CrossRefGoogle Scholar
  176. Nesbitt, M. and Samuel, D. (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: S. Padulosi, K. Hammer, J. Heller (Eds.) Hulled Wheats. International Plant Genetic Resources Institute, Rome, pp. 41–100.Google Scholar
  177. Nesbitt, M. (2002) When and where did domesticated cereals first occur in southwest Asia? In: R. Cappers, S. Bottema (Eds.), The dawn of farming in the Near East. Berlin. Ex Oriente, pp. 113–132.Google Scholar
  178. Nishikawa, K., Furuta, Y. and Wada, T. (1980) Genetic studies on alpha-amylase isozymes in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Jpn. J. Genet. 55, 325–336.CrossRefGoogle Scholar
  179. Onishi, I., Hongo, A., Sasakuma, T., Kawahara, T., Kato, K. and Miura, H. (2006) Variation and segregation for rachis fragility in spelt wheat, Triticum spelta L. Gent. Res. Crop Evol. 53, 985–992.CrossRefGoogle Scholar
  180. Orabi, J., Backes, G., Wolday, A., Yahyaoui, A. and Jahoor, A. (2007) The horn of Africa as a centre of barley diversification and a potential domestication site. Theor. Appl. Genet. 114, 1117–1127.PubMedCrossRefGoogle Scholar
  181. Ozkan, H., Brandolini, A., Schaefer-Pregl, R. and Salamini, F. (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol. Biol. Evol. 19, 1797–1801.PubMedCrossRefGoogle Scholar
  182. Ozkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J. and Salamini, F. (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor. Appl. Genet. 110, 1052–1060.PubMedCrossRefGoogle Scholar
  183. Ozkan, H., Brandolini, A., Torun, A., Altintas, S., Eker, S., Kilian, B., Braun, H., Salamini, F. and Cakmak, I. (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: H.T. Buck, J.E. Nisi, N. Salomon (Eds.), Wheat Production in Stressed Environments. Springer, pp. 455–462.Google Scholar
  184. Pasternak, R. (1998) Investigations of botanical remains from Nevali Cori PPNB, Turkey: a short interim report. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 170–177.Google Scholar
  185. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.PubMedCrossRefGoogle Scholar
  186. Peng, J., Ronin, Y., Fahima, T., Röder, M.S., Li, Y., Nevo, E. and Korol, A. (2003) Domestication quantitative trait loci in Triticum dicoccoides the progenitor of wheat. Proc. Natl. Acad. Sci. USA 10, 2489–2494.CrossRefGoogle Scholar
  187. Perretant, M., Cadalen, T., Charmet, G., Sourdille, P., Nicolas, P., Boeuf, C., Tixier, M.H., Branlard, G., Bernard, S. and Bernard, M. (2000) QTL analysis of bread making quality in wheat using a doubled haploid population. Theor. Appl. Genet. 100, 1167–1175.CrossRefGoogle Scholar
  188. Perrino, P., Laghetti, G., D’Antuono, L.F., Al Ajlouni, M., Kanbertay, M., Szabo, A.T. and Hammer, K. (1996) Ecogeographical distribution of hulled wheat species. In: S. Padulosi, K. Hammer, J. Heller (Eds.), Hulled Wheats. International Plant Genetic Resources Institute. Rome, pp. 102–118.Google Scholar
  189. Pluzhnikov, A. and Donnelly, P. (1996) Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144, 1247–1262.PubMedGoogle Scholar
  190. Pourkheirandish, M. and Komatsuda, T. (2007) The importance of barley genetics and domestication in a global perspective. Ann. Bot. 100, 999–1008.PubMedCrossRefGoogle Scholar
  191. Pozzi, C., Rossini, L., Vecchietti, A. and Salamini, F. (2004) Gene and genome changes during domestication. In: P.K. Gupta, R.K. Varshney (Eds.), Cereal genomics. Kluwier Academic Publisher, London, pp. 165–198.Google Scholar
  192. Pozzi, C. and Salamini, F. (2007) Genomics of wheat domestication. In: R. Varshney, R. Tuberosa (Eds.), Genomic assisted crop improvement: Vol 2: Genomics Applications in Crops. Springer, New York, pp. 441–469.Google Scholar
  193. Rahman, S., Jolly, J.C., Skerritt, J.H. and Wallosheck, A. (1994) Cloning of a wheat 15 kDA grain softness protein (GSP). GSP is a mixture of puroindoline-like polypetides. Eur. J. Biochem. 223, 917–925.PubMedCrossRefGoogle Scholar
  194. Rao, M. (1972) Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf. Serv. 35, 9.Google Scholar
  195. Rao, M.V.P. (1977) Mapping of the sphaerococcum gene ‘s’ on chromosome 3D of wheat. Cereal Res. Comm. 5, 15–17.Google Scholar
  196. Renfrew, C. (2002) The emerging synthesis’: the archaeogenetics of farming/language dispersals and other spread zones. In: P. Bellwood, C. Renfrew (Eds.), Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp. 3–16.Google Scholar
  197. Richards, R. (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust. J. Agric. Res. 39, 749–757.CrossRefGoogle Scholar
  198. Rollefson, G., Simmons, A., Donaldson, M., Gillespie, W., Kafafi, Z., Kohler-Rollefson, I., McAdam, E., Ralston, S. and Tubb, K. (1985) Excavations at the pre-pottery Neolithic B village of ‘Ain Ghazal (Jordan), 1983. Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin. 117, 69–116.Google Scholar
  199. Rong, J., Millet, E., Manisterski, J. and Feldman, M. (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115, 121–126.CrossRefGoogle Scholar
  200. Rossini, L., Vecchietti, A., Nicoloso, L., Stein, N., Franzago, S., Salamini, F. and Pozzi, C. (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach Theor. Appl. Genet. 112, 1073–1085.PubMedCrossRefGoogle Scholar
  201. Russell, J., Booth, A., Fuller, F., Harrower, B., Hedley, P., Machray, G. and Powell, W. (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47, 389–398.PubMedCrossRefGoogle Scholar
  202. Saisho, D. and Purugganan, M.D. (2007) Molecular phylogeny of domesticated barley traces expansion of agriculture in the Old World. Genetics 177, 1765–1776.PubMedCrossRefGoogle Scholar
  203. Sakamura, T. (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum Arten. Bot. Mag. Tokyo 32, 151–154.Google Scholar
  204. Salamini, F. (2003) Hormones and the green revolution. Science 302, 71–72.PubMedCrossRefGoogle Scholar
  205. Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R. and Martin, W. (2002) Genetics and geography of wild cereal domestication in the Near East. Nat. Rev. Genet. 3, 429–441.PubMedGoogle Scholar
  206. Salamini, F., Heun, M., Brandolini, A., Ozkan, H. and Wunder, J. (2004) Comment on “AFLP data and the origins of domesticated crops.” Genome 47, 615–620.PubMedCrossRefGoogle Scholar
  207. Sax, K. and Sax, M.J. (1924) Chromosome behaviour in a genus cross. Genetics 9, 454–464.PubMedGoogle Scholar
  208. Schiemann, E. (1939) Gedanken zur Genzentrentheorie Vavilovs. Naturwiss. 27, 377–401.Google Scholar
  209. Schiemann, E. and Staudt, G. (1958) Triticum × dimococcum, an amphidiploid with genomes AAAABB. Züchter. 28, 166–184.Google Scholar
  210. Schmidt, K. (2001) Göbekli Tepe, southeastern Turkey. A preliminary report on the 1995–1999 excavations. Paléorient 26, 45–54.CrossRefGoogle Scholar
  211. Schmidt, K. (2006) Sie bauten die ersten Tempel. Verlag CH Beck, München.Google Scholar
  212. Sears, E.R. (1954) The aneuploids of common wheat. Res. Bull. Missouri Agric. Exp. Stn. 572, 1–57.Google Scholar
  213. Sears, E.R. (1976) A synthetic hexaploid wheat with fragile rachis. Wheat Info. Serv. 41/42, 31–32.Google Scholar
  214. Sencer, H.A. and Hawkes, J.G. (1980) On the origin of cultivated rye. Biolog J. Linnean Society 13, 299–313.CrossRefGoogle Scholar
  215. Shao, Q., Li, C. and Basang, C. (1983) Semi-wild wheat from Xizang (Tibet). In: S. Sakamoto (Ed.), Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, 1983. Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan, pp. 111–114.Google Scholar
  216. Shah, M., Gill, K.S., Bezinger, P.S., Yen, Y., Kaeppler, S.M. and Ariyarathne, H.M. (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39, 1728–1732.CrossRefGoogle Scholar
  217. Sharma, H. and Waynes, J. (1980) Inheritance of tough rachis in crosses of Triticum monococcum and Triticum boeoticum. J. Hered. 7, 214–216.Google Scholar
  218. Simonetti, M., Bellomo, M.P., Laghetti, G., Perrino, P., Simeone, R. and Blanco, A. (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Gen. Res. Crop Evol. 46, 267–271.CrossRefGoogle Scholar
  219. Simons, K., Fellers, J.P., Trik, H.N., Zhang, Z., Tai, Y.S., Gill, B.S. and Faris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.PubMedCrossRefGoogle Scholar
  220. Slageren van, M.W. (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agriculture University Papers, Wageningen.Google Scholar
  221. Snape, J., Law, W., Parker, C.N., Worland, B.B. and Worland, A.J. (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor. Appl. Genet. 71, 518–526.CrossRefGoogle Scholar
  222. Sogaard, B. and Wettstein-Knowles von, P. (1987) Barley: genes and chromosomes. Carlsberg Res. Commun. 52, 123–196.CrossRefGoogle Scholar
  223. Sourdille, P., Perretnat, M.R., Charmet, G., Leory, P., Gautire, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E. and Bernard, M. (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet. 93, 580–586.CrossRefGoogle Scholar
  224. Spielmeyer, W. and Richards, R.A. (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor. Appl. Genet. 109, 1303–1310.PubMedCrossRefGoogle Scholar
  225. Stutz, H.C. (1972) On the origin of cultivated rye. Amer. J. Bot. 59, 59–70.CrossRefGoogle Scholar
  226. Szücs, P., Karsai, I., Zitzewitz von, J., Meszaros, K., Cooper, L.L., Gu, Y.Q., Chen, T.H., Hayes, P.M. and Skinner, J.S. (2006) Positional relationship between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor. Appl. Genet. 112, 1277–1285.PubMedCrossRefGoogle Scholar
  227. Szücs, P., Skinner, J.S., Karsai, I., Cuesta-Marcos, A., Haggard, K.G., Corey, A.E., Chen, T.H.H. and Hayes, P.M. (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol. Genet.Genom. 277, 249–261.CrossRefGoogle Scholar
  228. Taenzler, B., Esposti, R.F., Vaccino, P., Brandolini, A., Effgen, S., Heun, M., Schäfer-Pregl, R., Borghi, B. and Salamini, F. (2002) Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet. Res. Camb. 80, 131–143.CrossRefGoogle Scholar
  229. Takahashi, R. (1955) The origin of cultivated barley. In: M. Demerec (Ed.), Advances in Genetics. Academic Press, New York, pp. 227–266.Google Scholar
  230. Takahashi, R. (1972) Non-brittle rachis 1 and non-brittle rachis 2. Barley Genet. Newsl. 2, 181–182.Google Scholar
  231. Takeda, K. (1995) Varietal variation and inheritance of seed dormancy in barley. Proc. Seventh International Symp on Pre-Harvest Sprouting in Cereals. Abashiri, Hokkaido, Japan, 205–212.Google Scholar
  232. Taketa, S., Kikuchi, S., Awayama, T., Yamamoto, S., Ichii, M. and Kawasaki, S. (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor. Appl. Genet. 108, 1236–1242.PubMedCrossRefGoogle Scholar
  233. Taketa, S., Awayama, T., Amano, S., Sakurai, Y. and Ichii, M. (2006) High-resolution mapping of the nud locus controlling the naked caryopsis in barley. Plant Breed. 125, 337–342.CrossRefGoogle Scholar
  234. Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S. and Takeda, K. (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 105, 4062–4067.PubMedCrossRefGoogle Scholar
  235. Talbert, L.E., Smith, L.Y. and Blake, N.K. (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41, 402–407.CrossRefGoogle Scholar
  236. Tanno, K., Taketa, S., Takeda, K. and Komatsuda, T. (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor. Appl. Genet. 104, 54–60.PubMedCrossRefGoogle Scholar
  237. Tanno, K. and Takeda, K. (2004) On the origin of six-rowed barley with brittle rachis, agriocrithon [Hordeum vulgare ssp. vulgare f. agriocrithon (Åberg) Bowd.], based on a DNA marker closely linked to the vrs1 (six-row gene) locus. Theor. Appl. Genet. 110, 145–150.PubMedCrossRefGoogle Scholar
  238. Tanno, K. and Willcox, G. (2006) How fast was wild wheat domesticated? Science 311, 1886.PubMedCrossRefGoogle Scholar
  239. Ternowskaya, T.K. and Zhirov, E.G. (1993) Bread wheat genome D. Genetic control of tender glume and depression at its base. Tsitologiya Genetica 27, 78–83.Google Scholar
  240. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E.S. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.PubMedCrossRefGoogle Scholar
  241. Thuillet, A.-C., Bru, D., David, J., Roumet, P., Santoni, S., Sourdille, P. and Bataillon, T. (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. Ssp durum desf. Mol. Biol. Evol. 19, 122–125.PubMedCrossRefGoogle Scholar
  242. Thuillet, A.-C., Bataillon, T., Poirier, S., Santoni, S. and David, J.L. (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589–1599.PubMedCrossRefGoogle Scholar
  243. Tranquilli, G., Lijavetzky, D., Muzzi, G. and Dubcovsky, J. (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol. Gen. Genet. 262, 846–850.PubMedCrossRefGoogle Scholar
  244. Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.S. (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140, 1397–1405.PubMedCrossRefGoogle Scholar
  245. Turnbull, K., Turner, M., Mukai, Y, Yamamoto, M., Morell, M.K., Appels, R. and Rahman, S. (2003) The organization of genes tightly linked to the Ha locus in Ae. tauschii, the D genome donor of wheat. Genome 46, 330–336.PubMedCrossRefGoogle Scholar
  246. Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.PubMedCrossRefGoogle Scholar
  247. Vavilov, N.I. (1917) On the origin of cultivated rye. Bull. Appl. Bot, Genet. Pl. Breed. 10, 561–590.Google Scholar
  248. Vavilov, N.I. (1926) Studies on the origin of cultivated plants. Institut Botanique Appliqué et d’Amelioration des Plantes, Leningrad.Google Scholar
  249. Vavilov, N.I. (1992) Origin and geography of cultivated plants. (D. Love, transl.), Cambridge University of Press, Cambridge, pp. 316–366.Google Scholar
  250. Villareal, R., Mujeeb-Kazi, A. and Rajaram, S. (1996) Inherintance of threshability in synthetic hexaploid by T. aestivum crosses. Plant Breed. 115, 407–409.CrossRefGoogle Scholar
  251. Watanabe, N. and Ikebata, N. (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115, 215–220.CrossRefGoogle Scholar
  252. Watanabe, N., Sogiyama, K., Yamagashi, Y. and Skata, Y. (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137, 180–185.CrossRefGoogle Scholar
  253. Watanabe, N. 2005 The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica 142, 247–251.CrossRefGoogle Scholar
  254. Watanabe, N., Takesada, N., Fujii, Y. and Martinek, P. (2005a) Comparative mapping of genes for brittle rachis in Triticum and Aegilops Czech J. Genet. Plant Breed. 41, 39–44.Google Scholar
  255. Watanabe, N., Takesada, N., Shibata, Y. and Ban, T. (2005b) Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144, 119–123.Google Scholar
  256. Watanabe, N., Fujii, Y., Kato, N., Ban, T. and Martinek, P. (2006a) Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J. Appl. Genet. 47, 93–98.Google Scholar
  257. Watanabe, N., Fujii, Y., Takesada, N. and Martinek, P. (2006b) Cytological and microsatellite mapping of the gene for brittle rachis in a Triticum aestivum-Aegilops tauschii introgression line. Euphytica 151, 63–69.Google Scholar
  258. Weiss, E., Kislev, M.E. and Hartmann, A. (2006) Autonomous cultivation before domestication. Science 312, 1608–1610.PubMedCrossRefGoogle Scholar
  259. Wicker, T., Schlagenhauf, E., Graner, A., Close, T.J., Keller, B. and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.PubMedCrossRefGoogle Scholar
  260. Willcox, G. (1996) Evidence for plant exploitation and vegetation history from three early Neolithic pre-pottery sites on the Euphrates (Syria). Veget. Hist. Archaeobot. 5, 143–152.CrossRefGoogle Scholar
  261. Willcox, G. (1998) Archaeobotanical evidence for the beginnings of agriculture in southwest Asia. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 25–38.Google Scholar
  262. Willcox, G. (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Veget. Hist. Archaeobot. 14, 534–541.CrossRefGoogle Scholar
  263. Worland, A. (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 49–57.CrossRefGoogle Scholar
  264. Wright, S.I., Vroh, I., Schroeder, S.G., Yamasaki, M., Doebley, J.F., McMullen, M.D. and Gaut, B.S. (2005) The effects of artificial selection on the maize genome. Science 308, 1310–1314.PubMedCrossRefGoogle Scholar
  265. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.PubMedCrossRefGoogle Scholar
  266. Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. and Dubcovsky, J. (2004a) Allelic variation at the VRN-1 promotor region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686.Google Scholar
  267. Yan, L., Loukoianov, A., Blech, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.Google Scholar
  268. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an ortholog of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.PubMedCrossRefGoogle Scholar
  269. Zeist van, W. (1970) The oriental institute excavations at Mureybit, Syria: Preliminary report on the 1965 campaign. Part III. Palaeobotany. J. Near East Stud. 29, 167–176.CrossRefGoogle Scholar
  270. Zeist van, W. and Roller de, G.J. (1991–2) The plant husbandry of aceramic Cayönü, S.E. Turkey. Palaeohistorica 33/34, 65–96.Google Scholar
  271. Zhang, W., Qu, L.J., Gu, H., Gao, W., Liu, M., Chen, J. and Chen, Z. (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor. Appl. Genet. 104, 1099–1106.PubMedCrossRefGoogle Scholar
  272. Zitzewitz von, J., Szücs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H.H., Hayes, P.M. and Skinner, J.S. (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 59, 449–467.CrossRefGoogle Scholar
  273. Zohary, D. (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet. Res. Crop Evol. 46, 133–142.CrossRefGoogle Scholar
  274. Zohary, D. and Hopf, M. (2000) Domestication of plants in the old world. Oxford University Press, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benjamin Kilian
    • 1
  • Hakan Özkan
    • 2
  • Carlo Pozzi
    • 3
  • Francesco Salamini
    • 4
  1. 1.Institute of Botany III, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank/Genome Diversity, Corrensstrasse 3, 06466 Gatersleben, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, Carl-von-Linné-Weg 10Germany
  2. 2.Faculty of Agriculture, Department of Field CropsUniversity of CukurovaTurkey
  3. 3.Fondazione Parco Tecnologico PadanoVia Einstein – Localita Cascina CodazzaItaly
  4. 4.Department of Plant Breeding and Genetics, Carl-von-Linné-Weg 10Max Planck Institute for Plant Breeding ResearchGermany

Personalised recommendations