Skip to main content

Wheat and Barley Genome Sequencing

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

A high quality reference genome sequence is a prerequisite resource for accessing any gene, driving genomics-based approaches to systems biology, and for efficient exploitation of natural and induced genetic diversity of an organism. Wheat and barley possess genomes of a size that was long presumed to be not amenable for whole genome sequencing. So far, only limited genomic sequencing of selected loci has been performed, providing preliminary information about the organization of the Triticeae genomes. Driven by breakthrough technology improvements, whole genome sequencing of Triticeae genomes is poised to become a realistic undertaking. This chapter provides an overview of the history of plant genome sequencing, summarizes the status of Triticeae genome sequencing efforts, describes next generation sequencing technologies, and offers an outlook on the future of wheat and barley genome sequencing based on these technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert, T.J., Molla, M.N., Muzny, D.M., Nazareth, L., Wheeler, D., Song, X., Richmond, T.A., Middle, C.M., Rodesch, M.J., Packard, C.J. et al. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Meth. 4, 903.

    Article  CAS  Google Scholar 

  • Anderson, O.D., Rausch, C., Moullet, O. and Lagudah, E.S. (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing gene distribution, and retrotransposon clusters. Funct. Integr. Genomics 3, 56–68.

    PubMed  CAS  Google Scholar 

  • Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L. and Schnable, P.S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910–918.

    Article  PubMed  CAS  Google Scholar 

  • Barry, G.F. (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125, 1164–1165.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, S.T., Barnes, C., Cox, A., Davies, L. and Brown, C. (2005) Toward the $1000 human genome. Pharmacogenomics 6, 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, P.R., Lukaszewski, A., Cui, X., Xu, J., Svensson, J.T., Wanamaker, S., Waines, J.G. and Close, T.J. (2007) Mapping translocation breakpoints using a wheat microarray. Nucl. Acids Res. 35, 2936–2943.

    Article  PubMed  CAS  Google Scholar 

  • Biémont, C. and Vieira, C. (2006) Junk DNA as an evolutionary force. Nature 443, 521–524.

    Article  PubMed  CAS  Google Scholar 

  • Binladen, J., Gilbert, M.T.P., Bollback, J.P., Panitz, F., Bendixen, C., Nielsen, R. and Willerslev, E. (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J. (2004) Coding sequences of functioning human genes derived entirely from mobile element sequences. Proc Natl Acad Sci USA 101, 16825–16830.

    Article  PubMed  CAS  Google Scholar 

  • Brockman, W., Alvarez, P., Young, S., Garber, M., Giannoukos, G., Lee, W.L., Russ, C., Lander, E.S., Nusbaum, C. and Jaffe, D.B. (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. gr.070227.070107.

    Google Scholar 

  • Buell, C.R. (2002) Obtaining the sequence of the rice genome and lessons learned along the way. Trends Plant Sci. 7, 538–542.

    Article  PubMed  CAS  Google Scholar 

  • Burr, B. (1999) A report from Singapore, September 1997: An international collaboration to sequence the rice genome. Oryza: Newsletter for International Rice Genome Sequencing Project 1999, 4–9.

    Google Scholar 

  • Burr, B. (2002) Mapping and sequencing the rice genome. Plant Cell 14, 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Chaisson, M.J. and Pevzner, P.A. (2008) Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, F., Haas, B.J., Goldberg, S.M., May, G.D., Xiao, Y. and Town, C.D. (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7, 272.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T.T., Fu, G., Hinds, D.A. et al. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.M., Wagler, T.N., Quijada, P. and Doebley, J. (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A. and Wise, R.P. (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol. 134, 960–968.

    Article  PubMed  CAS  Google Scholar 

  • Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M. and Jacobsen, S.E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Cordaux, R., Udit, S., Batzer, M.A. and Feschotte, C. (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103, 8101–8106.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., Ma, J., Pontaroli, A.C., Pratt, L.H. and Bennetzen, J.L. (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA 102, 19243–19248.

    Article  PubMed  CAS  Google Scholar 

  • Dolinski, K. and Botstein, D. (2005) Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res. 15, 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky, J., Ramakrishna, W., SanMiguel, P.J., Busso, C.S., Yan, L.L., Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 125, 1342–1353.

    Article  PubMed  CAS  Google Scholar 

  • Emberton, J., Ma, J., Yuan, Y., SanMiguel, P. and Bennetzen, J.L. (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res. 15, 1441–1446.

    Article  PubMed  CAS  Google Scholar 

  • Emrich, S.J., Barbazuk, W.B., Li, L. and Schnable, P.S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Gerstein, M.B., Bruce, C., Rozowsky, J.S., Zheng, D., Du, J., Korbel, J.O., Emanuelsson, O., Zhang, Z.D., Weissman, S. and Snyder, M. (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M. et al. (1996) Life with 6000 genes. Science 274, 546–567.

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn, B. and Messing, J. (1978) Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature 272, 375–377.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K., Zhang, X., Borevitz, J.O., Li, W.-H. and Shiu, S.-H. (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 17, 632–640.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, S., Gao, X., Briggs, J., Willson, R.and Tu, S.-C. (2004) Methods for real-time single molecule sequence determination. United States Patent, 7,329,492, Visigen Biotechnologies, Inc. (TX).

    Google Scholar 

  • Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J. W et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320, 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, D., Francois, P., Farinelli, L., Osteras, M. and Schrenzel, J. (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 10.1101/gr.072033.072107.

    Google Scholar 

  • Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J. et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, C.A., III. (2007) DNA sequencing: bench to bedside and beyond. Nucl. Acids Res. 35, 6227–6237.

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project. (2005) The map-based sequence of the rice genome. Nature 436, 793–800.

    Article  CAS  Google Scholar 

  • Itoh, T., Tanaka, T., Barrero, R.A., Yamasaki, C., Fujii, Y., Hilton, P.B., Antonio, B.A., Aono, H., Apweiler, R., Bruskiewich, R. et al. (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 17, 175–183.

    Article  PubMed  Google Scholar 

  • Jakobsson, M., Scholz, S.W., Scheet, P., Gibbs, J.R., VanLiere, J.M., Fung, H.-C., Szpiech, Z.A., Degnan, J.H., Wang, K., Guerreiro, R. et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, C.T., Chiu, R., Bosdet, H.S.I.E., Krzywinski, M.I., Fjell, C.D., Wilkin, J., Yin, T., DiFazio, S.P., Ali, J., Asano, J.K. et al. (2007) A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J. 50, 1063–1078.

    Article  PubMed  CAS  Google Scholar 

  • Kidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, N., Graves, T., Hansen, N., Teague, B., Alkan, C., Antonacci, F. et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A. et al. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. (2005) Fruitfly genome is not junk. Nature 437, 1106.

    Article  PubMed  CAS  Google Scholar 

  • Korlach, J., Marks, P.J., Cicero, R.L., Gray, J.J., Murphy, D.L., Roitman, D.B., Pham, T.T., Otto, G.A., Foquet, M. and Turner, S.W. (2008) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci USA 105, 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux, D., Peterson, D.G., Li, W., Fellers, J.P. and Gill, B.S. (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48, 1120–1126.

    Article  PubMed  CAS  Google Scholar 

  • Lazo, G.R., Chao, S., Hummel, D.D., Edwards, H., Crossman, C.C., Lui, N., Matthews, D.E., Carollo, V.L., Hane, D.L., You, F.M. et al. (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168, 585–593.

    Article  PubMed  Google Scholar 

  • Mardis, E. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.-J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  • Messing, J. (1999) The formation of an International Rice Genome Sequencing Project. Oryza: Newsletter for International Rice Genome Sequencing Project, 2–4.

    Google Scholar 

  • Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F.X. et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101, 14349–14354.

    Article  PubMed  CAS  Google Scholar 

  • Messing, J., Gronenborn, B., Müller-Hill, B. and Hopschneider, H.P. (1977) Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci USA 74, 3642–3646.

    Article  PubMed  CAS  Google Scholar 

  • Messing, J. and Vieira, J. (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Metzker, M.L. (2005) Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M., Stenzel, U. and Hofreiter, M. (2008) Parallel tagged sequencing on the 454 platform. Nat. Protocols 3, 267–278.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M., Stenzel, U., Myles, S., Prufer, K. and Hofreiter, M. (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucl. Acids Res. 35, e97.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L.T. et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996.

    Article  PubMed  CAS  Google Scholar 

  • Morgante, M. (2006) Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotechnol. 17, 168–173.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara, Y., Mochida, K., Nemoto, Y., Murai, K., Yamazaki, Y., Shin-I, T. and Kohara, Y. (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 33, 1001–1011.

    Article  PubMed  Google Scholar 

  • Ohno, S. (1972) So much ‘junk’ DNA in our genome. Brookhaven Symp. Biol. 23, 366–370.

    CAS  Google Scholar 

  • Okou, D.T., Steinberg, K.M., Middle, C., Cutler, D.J., Albert, T.J. and Zwick, M.E. (2007) Microarray-based genomic selection for high-throughput resequencing. Nat. Meth. 4, 907.

    Article  CAS  Google Scholar 

  • Olson, M.V. (2008) Human genetics: Dr Watson’s base pairs. Nature 452, 819–820.

    Article  PubMed  CAS  Google Scholar 

  • Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N. and Weigel, D. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. gr. 10.1101/080200.080108.

    Google Scholar 

  • Palmer, L. and McCombie, W.R. (2002) On the importance of being finished. Genome Biol. 3, comment2010.2011–comment2010.2014.

    Google Scholar 

  • Parameswaran, P., Jalili, R., Tao, L., Shokralla, S., Gharizadeh, B., Ronaghi, M. and Fire, A.Z. (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucl. Acids Res. 35, e130.

    Article  PubMed  CAS  Google Scholar 

  • Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts, D.C., Wessler, S.R. and Paterson, A.H. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res. 12, 795–807.

    Article  PubMed  CAS  Google Scholar 

  • Pheasant, M. and Mattick, J.S. (2007) Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Pop, M. and Salzberg, S.L. (2008) Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorak, J., Linkiewicz, A.M., Ratnasiri, A. et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz, P.D. (2003) Constructing gene-enriched plant genomic libraries using methylation filtration technology. Methods Mol. Biol. 236, 21–36.

    PubMed  CAS  Google Scholar 

  • Rabinowicz, P.D. and Bennetzen, J.L. (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. Curr. Opin. Plant Biol. 9, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O’Shaughnessy, A.L., Nascimento, L.U., McCombie, W.R. and Martienssen, R.A. (2005) Differential methylation of genes and repeats in land plants. Genome Res. 15, 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna, W., Dubcovsky, J., Park, Y.J., Busso, C., Emberton, J., SanMiguel, P. and Bennetzen, J.L. (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162, 1389–1400.

    PubMed  CAS  Google Scholar 

  • Ronaghi, M. (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J., Wanamaker, S., Walia, H., Rodriguez, E. et al. (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Gen. Genomics 274, 515–527.

    Article  CAS  Google Scholar 

  • Rostoks, N., Park, Y., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B., SanMiguel, P., Jiang, Z., Brueggeman, R., Sandhu, D. et al. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, S. (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci. 8, 321.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, D., Rahimi, M., Lund, J., Mehta, R. and Parviz, B. (2007) Toward nanoscale genome sequencing. Trends Biotechnol. 25, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E. et al. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104, 11376–11381.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F. (1988) Sequences, sequences, and sequences. Annu. Rev. Biochem. 57, 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F. (2001) The early days of DNA sequences. Nat. Med. 7, 267–268.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T. and Burr, B. (1999) Rice genome sequencing as a gold mining for all. Oryza: Newsletter for International Rice Genome Sequencing Project, 1–2.

    Google Scholar 

  • Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Service, R.F. (2006) Gene sequencing: the race for the $1000 genome. Science 311, 1544–1546.

    Article  PubMed  CAS  Google Scholar 

  • Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Shendure, J., Mitra, R.D., Varma, C. and Church, G.M. (2004) Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C. and Koornneef, M. (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N. (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res. 15, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R.K., Perovic, D. and Graner, A. (2007) A 1000 loci transcript map of the barley genome – new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114, 823–839.

    Article  PubMed  CAS  Google Scholar 

  • Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T.Z., Garcia-Hernandez, M., Foerster, H., Li, D., Meyer, T., Muller, R., Ploetz, L. et al. (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucl. Acids Res. 36, D1009–D1014.

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium. (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science 282, 2012–2018.

    Article  Google Scholar 

  • The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.

    Article  CAS  Google Scholar 

  • The French–Italian Public Consortium for Grapevine Genome Characterization. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.

    Article  CAS  Google Scholar 

  • The International HapMap Consortium. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861.

    Article  CAS  Google Scholar 

  • Thurman, R.E., Day, N., Noble, W.S. and Stamatoyannopoulos, J.A. (2007) Identification of higher-order functional domains in the human ENCODE regions. Genome Res. 17, 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Timko, M., Rushton, P., Laudeman, T., Bokowiec, M., Chipumuro, E., Cheung, F., Town, C. and Chen, X. (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9, 103.

    Article  PubMed  CAS  Google Scholar 

  • Travis, J. (2008) Uncorking the grape genome. Science 320, 475–477.

    Article  PubMed  CAS  Google Scholar 

  • Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A. et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., FitzGerald, L.M., Vezzulli, S., Reid, J. et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., Smith, H.O. and Hood, L. (1996) A new strategy for genome sequencing. Nature 381, 364.

    Article  PubMed  CAS  Google Scholar 

  • Vij, S., Gupta, V., Kumar, D., Vydianathan, R., Raghuvanshi, S., Khurana, P., Khurana, J.P. and Tyagi, A.K. (2006) Decoding the rice genome. BioEssays 28, 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J. and Tanksley, S.D. (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172, 2529–2540.

    Article  PubMed  CAS  Google Scholar 

  • Warren, W.C., Hillier, L.W., Graves, J.A.M., Birney, E., Ponting, C.P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A.T. et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Weber, A.P.M., Weber, K.L., Carr, K., Wilkerson, C. and Ohlrogge, J.B. (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, F., Kim, H.R., Goicoechea, J.L., Chen, M., Lee, S. et al. (2008) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3, e123.

    Article  CAS  Google Scholar 

  • Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., Roth, G.T. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Matthews, D. and Keller, B. (2002) TREP, a database for Triticeae repetitive elements. Trends Plant Sci. 7, 561–562.

    Article  CAS  Google Scholar 

  • Wicker, T., Narechania, A., Sabot, F., Stein, J., Vu, G.T.H., Graner, A., Ware, D. and Stein, N. (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9, 518.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Schlagenhauf, E., Graner, A., Close, T., Keller, B. and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15, 1186–1197.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and Stein, N. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, re-arrangements and repeats. Plant J. 41, 184–194.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J. and Bahler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R.K., Ware, D., Wing, R.A., McCombie, W.R., Schnable, P.S., Clifton, S.W., Aluru, S., Stein, L.D., Martienssen, R. and Fulton, R. (2007) Sequencing the maize B73 genome. Progress Report (www.maizegdb.org/sequencing_project.php).

  • Wu, R. and Kaiser, A.D. (1968) Structure and base sequence in the cohesive ends of bacteriophase lambda DNA. J. Mol. Biol. 35, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R. and Taylor, E. (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 57, 491–511.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. and van der Knaap, E. (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M. et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W., Hu, S., Zeng, C. et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3, e38.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., Potokina, E., Scholz, U., Schweizer, P., Zierold, U. et al. (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J. 40, 276–290.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellye Eversole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eversole, K., Graner, A., Stein, N. (2009). Wheat and Barley Genome Sequencing. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_24

Download citation

Publish with us

Policies and ethics