Linkage Disequilibrium and Association Mapping in the Triticeae

  • Mark E. Sorrells
  • Jianming Yu
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Association mapping, also referred to as linkage disequilibrium mapping, has gained considerable popularity as an efficient genetic mapping methodology because of improved statistical approaches that increase power and reduce false positive associations. Association mapping exploits historical recombination events in a diverse population of distantly related or unrelated individuals. In this chapter, linkage disequilibrium estimates and association mapping results for the Triticeae are reviewed and compared to other species. Strategies for implementing association mapping are discussed that take into account objectives, types of markers, species and population size and composition. Finally, different methodologies for the application of association analysis to crop improvement are presented along with issues specific to breeding programs.


Association Mapping Genomic Selection DArT Marker High Linkage Disequilibrium High Molecular Weight Glutenin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A. and Kuchel, H. (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. TAG Theor. Appl. Genet. 113, 1409–1420.CrossRefGoogle Scholar
  2. Akhunov, E. D., Goodyear, A. W., Geng, S., Qi, L. L., Echalier, B., Gill, B. S., Gustafson, J. P., Lazo, G., Chao, S. and Anderson, O. D. (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13, 753–763.PubMedCrossRefGoogle Scholar
  3. Arbelbide, M., Yu, J. and Bernardo, R. (2006) Power of mixed-model QTL mapping from phenotypic, pedigree, and marker data in self-pollinated crops. Theor. Appl. Genet. 112, 876–884.Google Scholar
  4. Bernardo, R. and Charcosset, A. (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci. 46, 614–621.CrossRefGoogle Scholar
  5. Bernardo, R., Moreau, L. and Charcosset, A. (2006) Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci. 46, 1972–1980.CrossRefGoogle Scholar
  6. Bernardo, R. and Yu, J. (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082–1090.CrossRefGoogle Scholar
  7. Blott, S., Kim, J. J., Moisio, S., Schmidt-Kuntzel, A., Cornet, A., Berzi, P., Cambisano, N., Ford, C., Grisart, B., Johnson, D., Karim, L., Simon, P., Snell, R., Spelman, R., Wong, J., Vilkki, J., Georges, M., Farnir, F. and Coppieters, W. (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163, 253–266.PubMedGoogle Scholar
  8. Bradbury, P., Zhang, Z., Kroon, D., Casstevens, T., Ram-Doss, Y. and Buckler, E. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.Google Scholar
  9. Breseghello, F. and Sorrells, M. E. (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci. 46, 1323–1330.Google Scholar
  10. Breseghello, F. and Sorrells, M. E. (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172, 1165–1177.Google Scholar
  11. Brim, C. A. and Stuber, C. W. (1973) Application of genetic male sterility to recurrent selection schemes in soybeans. Crop Sci. 14, 528–530.CrossRefGoogle Scholar
  12. Buntjer, J., Sørensen, A. and Peleman, J. (2005) Haplotype diversity: the link between statistical and biological association. Trends Plant Sci. 10, 466–471.PubMedCrossRefGoogle Scholar
  13. Caldwell, K., Russell, J., Langridge, P. and Powell, W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172, 557–567.PubMedCrossRefGoogle Scholar
  14. Chao, S., Zhang, W., Dubcovsky, J. and Sorrells, M. E. (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium amoung us wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci. 47, 1018–1030.CrossRefGoogle Scholar
  15. Charmet, G., Robert, N., Perretant, M. R., Gay, G., Sourdille, P., Groos, C., Bernard, S. and Bernard, M. (1999) Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred lines. Theor. Appl. Genet. 99, 1143–1148.CrossRefGoogle Scholar
  16. Charmet, G., Robert, N., Perretant, M. R., Gay, G., Sourdille, P., Groos, C., Bernard, S. and Bernard, M. (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119, 89–93.CrossRefGoogle Scholar
  17. Christopher, M., Mace, E., Jordan, D., Rodgers, D., McGowan, P., Delacy, I., Banks, P., Sheppard, J., Butler, D. and Poulsen, D. (2007) Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica 154, 307–316.CrossRefGoogle Scholar
  18. Churchill, G. A., Airey, D. C., Allayee, H., Angel, J. M., Attie, A. D., Beatty, J., Beavis, W. D., Belknap, J. K., Bennett, B., Berrettini, W., Bleich, A., Bogue, M., Broman, K. W., Buck, K. J., Buckler, E., Burmeister, M., Chesler, E. J., Cheverud, J. M., Clapcote, S., Cook, M. N., Cox, R. D., Crabbe, J. C., Crusio, W. E., Darvasi, A., Deschepper, C. F., Doerge, R. W., Farber, C. R., Forejt, J., Gaile, D., Garlow, S. J., Geiger, H., Gershenfeld, H., Gordon, T., Gu, J., Gu, W., de Haan, G., Hayes, N. L., Heller, C., Himmelbauer, H., Hitzemann, R., Hunter, K., Hsu, H. C., Iraqi, F. A., Ivandic, B., Jacob, H. J., Jansen, R. C., Jepsen, K. J., Johnson, D. K., Johnson, T. E., Kempermann, G., Kendziorski, C., Kotb, M., Kooy, R. F., Llamas, B., Lammert, F., Lassalle, J. M., Lowenstein, P. R., Lu, L., Lusis, A., Manly, K. F., Marcucio, R., Matthews, D., Medrano, J. F., Miller, D. R., Mittleman, G., Mock, B. A., Mogil, J. S., Montagutelli, X., Morahan, G., Morris, D. G., Mott, R., Nadeau, J. H., Nagase, H., Nowakowski, R. S., O’Hara, B. F., Osadchuk, A. V., Page, G. P., Paigen, B., Paigen, K., Palmer, A. A., Pan, H. J., Peltonen-Palotie, L., Peirce, J., Pomp, D., Pravenec, M., Prows, D. R., Qi, Z., Reeves, R. H., Roder, J., Rosen, G. D., Schadt, E. E., Schalkwyk, L. C., Seltzer, Z., Shimomura, K., Shou, S., Sillanpaa, M. J., Siracusa, L. D., Snoeck, H. W., Spearow, J. L., Svenson, K. et al. (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137.PubMedCrossRefGoogle Scholar
  19. Crepieux, S., Lebreton, C., Flament, P. and Charmet, G. (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor. Appl. Genet. 111, 1409–1419.PubMedCrossRefGoogle Scholar
  20. Crossa, J., Burgueno, J., Dreisigacker, S., Vargas, M., Herrera-Foessel, S., Lillemo, M., Singh, R., Trethowan, R., Warburton, M., Franco, J., Reynolds, M., Crouch, J. and Ortiz, R. (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177, 1889–1913.Google Scholar
  21. Darvasi, A. and Soller, M. (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207.PubMedGoogle Scholar
  22. Dreisigacker, S., Zhang, P., Warburton, M. L., Van Ginkel, M., Hoisington, D., Bohn, M. and Melchinger, A. E. (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci. 44, 381.CrossRefGoogle Scholar
  23. Ersoz, E. S., Yu, J. and Buckler, E. (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: R. Varshney and R. Tuberosa (Eds.), Genomics-Assisted Crop Improvement. Springer, Dordrecht, Netherlands.Google Scholar
  24. Falush, D., Stephens, M. and Pritchard, J. K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.PubMedGoogle Scholar
  25. Flint-Garcia, S., Thornsberry, J. and Buckler, E. (2003) Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374.PubMedCrossRefGoogle Scholar
  26. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A. and Faggart, M. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.PubMedCrossRefGoogle Scholar
  27. Gaut, B. S. and Long, A. D. (2003) The lowdown on linkage disequilibrium. Am. Soc. Plant Biol. 15, 1502–1506.Google Scholar
  28. Gupta, P., Rustgi, S. and Kulwal, P. (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol. Biol. 57, 461–485.PubMedCrossRefGoogle Scholar
  29. Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Eco. Notes 2, 618–620.CrossRefGoogle Scholar
  30. Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C., Hochu, I., Poirier, S., Santoni, S., Glémin S. and David J. (2007) Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517.Google Scholar
  31. Hedrick, P. W. (1987). Gametic Disequilibrium Measures: Proceed With Caution. Genetics 117, 331–341.PubMedGoogle Scholar
  32. Heffner, E. L., Ornubol, C., Williams, K. R. and Sorrells, M. E. (2008) Dominant male-sterile populations for association mapping and introgression of exotic wheat germplasm. Aust. J. Agric. Res. 59, 470–474.Google Scholar
  33. Hill, W. G. and Robertson, A. (1968) Linkage disequilibrium in finite populations. TAG Theor. Appl. Genetic. 38, 226–231.CrossRefGoogle Scholar
  34. Hirschhorn, J. N. and Daly, M. J. (2005) Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108.PubMedCrossRefGoogle Scholar
  35. Jannink, J. L., Bink, M. and Jansen, R. C. (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci. 6, 337–342.PubMedCrossRefGoogle Scholar
  36. Jannink, J. L. and Jansen, R. (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157, 445–454.PubMedGoogle Scholar
  37. Jansen, R. C., Jannink, J. L. and Beavis, W. D. (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci. 43, 829–834.CrossRefGoogle Scholar
  38. Johnson, L. (2001) Marker assisted sweet corn breeding: a model for specialty crops. In: Proceedings of the 56th Annual Corn and Sorghum Industrial Research Conference, Chicago, IL. 5–7 Dec. 2001. American Seed Trade Association, Washington, DC, pp. 25–30.Google Scholar
  39. Johnson, R. (2004). Marker-assisted selection. Plant Breed. Rev. 24(1), 293–309.Google Scholar
  40. Kraakman, A. T. W., Niks, R. E., Van den Berg, P., Stam, P. and Van Eeuwijk, F. A. (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168, 435–446.PubMedCrossRefGoogle Scholar
  41. Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–756.PubMedGoogle Scholar
  42. Lewontin, R. C. (1964) The interaction of selection and linkage. II. Optimum models. Genetics 50, 757–782.PubMedGoogle Scholar
  43. Li, C., Zhou, A. and Sang, T. (2006) Rice domestication by reducing shattering. Science 311, 1936–1939.PubMedCrossRefGoogle Scholar
  44. Lin, J. Z., Morrell, P. L. and Clegg, M. T. (2002) The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley (Hordeum vulgare ssp. spontaneum). Genetics 162, 2007–2015.PubMedGoogle Scholar
  45. Long, A. D. and Langley, C. H. (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731. Cold Spring Harbor Lab.PubMedGoogle Scholar
  46. Maccaferri, M., Sanguineti, M. C., Natoli, V., Ortega, J. L. A., Salem, M. B., Bort, J., Chenenaoui, C., De Ambrogio, E., del Moral, L. G. and De Montis, A. (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet. Resour.: Characterization and Utilization 4, 79–85.CrossRefGoogle Scholar
  47. Maccaferri, M., Sanguineti, M. C., Noli, E. and Tuberosa, R. (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol. Breeding 15, 271–290.CrossRefGoogle Scholar
  48. Mackay, I. and Powell, W. (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12, 57–63.PubMedCrossRefGoogle Scholar
  49. Malysheva-Otto, L. V., Ganal, M. W. and Röder, M. S. (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genetics 7, 6.PubMedCrossRefGoogle Scholar
  50. Melchinger, A. E., Graner, A., Singh, M. and Messmer, M. M. (1994) Relationships among European barley germplasm. I: Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci. 34, 1191–1199.CrossRefGoogle Scholar
  51. Melchinger, A. E., Utz, H. F. and Schon, C. C. (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149, 383–403.PubMedGoogle Scholar
  52. Meuwissen, T. H., Hayes, B. J. and Goddard, M. E. (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.PubMedGoogle Scholar
  53. Meuwissen, T. H., Karlsen, A., Lien, S., Olsaker, I. and Goddard, M. E. (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161, 373–379.PubMedGoogle Scholar
  54. Morrell, P. L., Toleno, D. M., Lundy, K. E. and Clegg, M. T. (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgar e ssp. spontaneum) despite high rates of self-fertilization. Proc. National Acad. Sci. 102, 2442–2447.CrossRefGoogle Scholar
  55. Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C. and Flint, J. (2002) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Nat. Acad. Sci. USA 97, 12649–12654.Google Scholar
  56. Mott, R. and Flint, J. (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160, 1609–1618.PubMedGoogle Scholar
  57. Nordborg, M., Borevitz, J. O., Bergelson, J., Berry, C. C., Chory, J., Hagenblad, J., Kreitman, M., Maloof, J. N., Noyes, T., Oefner, P. J., Stahl, E. A. and Weigel, D. (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 30, 190–193.PubMedCrossRefGoogle Scholar
  58. Nordborg, M. and Donnelly, P. (1997) The coalescent process with selfing. Genetics 146, 1185–1195.PubMedGoogle Scholar
  59. Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., Bakker, E., Calabrese, P., Gladstone, J., Goyal, R., Jakobsson, M., Kim, S., Morozov, Y., Padhukasahasram, B., Plagnol, V., Rosenberg, N. A., Shah, C., Wall, J. D., Wang, J., Zhao, K., Kalbfleisch, T., Schultz, V., Kreitman, M. and Bergelson J. (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3:e196.Google Scholar
  60. Parisseaux, B. and Bernardo, R. (2004) In silico mapping of quantitative trait loci in maize. Theor. Appl. Genet. 109, 508–514.PubMedCrossRefGoogle Scholar
  61. Peleman, J. D. and van der Voort, J. R. (2003) Breeding by design. Trends Plant Sci. 8, 330–334.PubMedCrossRefGoogle Scholar
  62. Pestsova, E. and Röder, M. (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor. Appl. Genet. 106, 84–91.PubMedGoogle Scholar
  63. Price, A. H. (2006a) Believe it or not, QTLs are accurate! Trends Plant Sci. 11, 213–216.Google Scholar
  64. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. and Reich, D. (2006b) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909.Google Scholar
  65. Pritchard, J. K. and Przeworski, M. (2001) Linkage disequilibrium in humans: models and data. Am. J. Human Genet. 69, 1–14.CrossRefGoogle Scholar
  66. Pritchard, J. K. and Rosenberg, N. A. (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Human Genet. 65, 220–228.CrossRefGoogle Scholar
  67. Pritchard, J. K. Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedGoogle Scholar
  68. Ravel, C., Praud, S., Murigneux, A., Linossier, L., Dardevet, M., Balfourier, F., Dufour, P., Brunel, D. and Charmet, G. (2006) Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor. Appl. Genet. 112, 738–743.PubMedCrossRefGoogle Scholar
  69. Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M. and Buckler, E. S. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 98, 11479–11484.PubMedCrossRefGoogle Scholar
  70. Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P., Roose, M., Svensson, J., Stein, N., Varshney, R., Marshall, D., Graner, A., Close, T. and Waugh, R. (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc. Natl. Acad. Sci. USA 103, 18656–18661.PubMedCrossRefGoogle Scholar
  71. Russell, J. R., Booth, A., Fuller, J. D., Baum, M., Ceccarelli, S., Grando, S. and Powell, W. (2003) Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. TAG Theor. Appl. Genet. 107, 413–421.CrossRefGoogle Scholar
  72. Satagopan, J. M., Sen, S. and Churchill, G. A. (2007) Sequential quantitative trait locus mapping in experimental crosses. Stat. Appl. Genet. Mol. Biol. 6, Article12.Google Scholar
  73. Schon, C. C., Utz, H. F., Groh, S., Truberg, B., Openshaw, S. and Melchinger, A. E. (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167, 485–498.PubMedCrossRefGoogle Scholar
  74. Skøt, L., Humphreys, J., Humphreys, M. O., Thorogood, D., Gallagher, J., Sanderson, R., Armstead, I. P. and Thomas, I. D. (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177, 535.PubMedCrossRefGoogle Scholar
  75. Somers, D., Banks, T., Depauw, R., Fox, S., Clarke, J., Pozniak, C. and McCartney, C. (2007). Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50, 557–567.PubMedCrossRefGoogle Scholar
  76. Sorrells, M. E. and Fritz, S. E. (1982) Application of a dominant male-sterile allele to the improvement of self-pollinated crops. Crop Sci. 22, 1033–1035.CrossRefGoogle Scholar
  77. Steffenson, B. J., Olivera, P., Roy, J. K., Jin, Y., Smith, K. P. and Muehlbauer, G. J. (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Austl. J. Agric. Res. 58, 532.CrossRefGoogle Scholar
  78. Strake, S., Presterl, T., Stein, N., Perovic, D., Ordon, F. and Graner, A. (2007) Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus encoding Bymovirus resistance in barley. Genetics 175, 805–817.CrossRefGoogle Scholar
  79. Tenaillon, M.I., Mark C. Sawkins, M. C., Long, A.D., Gaut, R. L., Doebley, J. F. and Gaut, B. S. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. USA 98, 9161–9166.PubMedCrossRefGoogle Scholar
  80. Thornsberry, J. M., Goodman, M. M., Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E. S. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.PubMedCrossRefGoogle Scholar
  81. Tommasini, L., Schnurbusch, T., Fossati, D., Mascher, F. and Keller, B. (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115, 697–708.PubMedCrossRefGoogle Scholar
  82. Weber, A., Clark, R., Vaughn, L., de Jesús Sánchez-Gonzalez, J., Yu, J., Yandell, B. S., Bradbury, P. and Doebley, J. (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 177, 2349–2359.Google Scholar
  83. Weir, B. S. (1996) Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., USA.Google Scholar
  84. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A. (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 101, 9915–9920.CrossRefGoogle Scholar
  85. WTCCC. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.CrossRefGoogle Scholar
  86. Wu, R., Ma, C. X. and Casella, G. (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160, 779–792.PubMedGoogle Scholar
  87. Wu, R. and Zeng, Z. B. (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157, 899–909.PubMedGoogle Scholar
  88. Yu, J., Arbelbide, M. and Bernardo, R. (2005) Power of in silico QTL mapping from phenotypic, pedigree, and marker data in a hybrid breeding program. Theor. Appl. Genet. 110, 1061–1067.PubMedCrossRefGoogle Scholar
  89. Yu, J. and Buckler, E. (2006) Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160.PubMedCrossRefGoogle Scholar
  90. Yu, J., Holland, J. B., McMullen, M. D. and Buckler, E. S. (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551.PubMedCrossRefGoogle Scholar
  91. Yu, J., Pressoir, G., Briggs, W., Vroh Bi, I., Yamasaki, M., Doebley, J., McMullen, M., Gaut, B., Nielsen, D., Holland, J., Kresovich, S. and Buckler, E. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208.PubMedCrossRefGoogle Scholar
  92. Yu, J., Zhang, Z., Zhu, C., Tabanao, D., Pressoir, G., Tuinstra, M. R., Kresovich, S., Todhunter, R. S. and Buckler, E. S. (2009). Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. The Plant Genome 2, xxx–xxx (in press).Google Scholar
  93. Zhang, Y. M., Mao, Y., Xie, C., Smith, H., Luo, L. and Xu, S. (2005) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169, 2267–2275.PubMedCrossRefGoogle Scholar
  94. Zhao, K., Aranzana, M. J., Kim, S., Lister, C., Shindo, C., Tang, C., Toomajian, C., Zheng, H., Dean, C., Marjoram, P. and Nordborg, M. (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet. 4, 71–82.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA
  2. 2.Department of AgronomyKansas State UniversityManhattanUSA

Personalised recommendations