Developmental and Reproductive Traits in the Triticeae

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


This chapter reviews what is known about genes that control the timing of flowering during the year or inflorescence development in the Triticeae, focusing on barley and wheat. The methods used to identify major genes controlling flowering in response to extended periods of low temperature (Vernalization; Vrn genes) or day length (Photoperiod; Ppd genes) and genes controlling inflorescence development are considered. This shows that direct candidate gene approaches have proved less effective than positional cloning or composite fine mapping/candidate gene methods. The implications for identifying new target genes are discussed. The analysis of genetic pathways identified in models is also considered as an aid to understanding how genes in the Triticeae affect phenotypic variation. Finally, the evolution of these traits under domestication is considered in relation to the finding that orthologous genes and similar mutations are found to be major contributors to adaptive variation in different species.


Golden Promise Inflorescence Development Triticeae Species Flowering Time Gene Spring Growth Habit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges support by the Biotechnology and Biological Sciences Research Council of Great Britain through grant-in-aid to the John Innes Centre.


  1. Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J. and Harberd, N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94.PubMedCrossRefGoogle Scholar
  2. Bäurle, I. and Dean, C. (2006) The timing of developmental transitions in plants. Cell 125, 655–664.PubMedCrossRefGoogle Scholar
  3. Beales, J., Laurie, D.A. and Devos, K.M. (2005) Allelic variation at the linked AP1 and PhyC loci in hexaploid wheat is associated but not perfectly correlated with vernalization response. Theor. Appl. Genet. 110, 1099–1107.PubMedCrossRefGoogle Scholar
  4. Beales, J., Turner, A., Griffiths, S., Snape, J.W. and Laurie, D.A. (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutation of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721–733.PubMedCrossRefGoogle Scholar
  5. Benlloch, R., Berbel, A., Serrano-Mislata, A. and Madueno, F. (2007) Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676.PubMedCrossRefGoogle Scholar
  6. Blanc, G., Hokamp, K. and Wolfe, K.H. (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144.PubMedCrossRefGoogle Scholar
  7. Bommert, P., Satoh-Nagasawa, N., Jackson, D. and Hirano, H.Y. (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78.PubMedCrossRefGoogle Scholar
  8. Bonnin, I., Rousset, M., Madur, D., Sourdille, P., Dupuits, C., Brunel, D. and Goldringer, I. (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116, 383–394.PubMedCrossRefGoogle Scholar
  9. Chandler, P.M., Marion-Poll, A., Ellis, M. and Gubler, F. (2002) Mutants at the Slender1 locus of barley cv Himalaya: molecular and physiological characterization. Plant Physiol. 129, 181–190.PubMedCrossRefGoogle Scholar
  10. Chuck, G., Meeley, R.B. and Hake, S. (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12, 1145–1154.PubMedCrossRefGoogle Scholar
  11. Chuck, G., Meeley, R., Irish, E., Sakai, H. and Hake, S. (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet 39, 1517–1521.PubMedCrossRefGoogle Scholar
  12. Clark, R.M., Wagler, T.N., Quijada, P. and Doebley, J. (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597.PubMedCrossRefGoogle Scholar
  13. Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A. and Greenland, A.J. (2007a) Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J. Exp. Bot. 58, 1231–1244.Google Scholar
  14. Cockram, J., Chiapparino, E., Taylor, S.A., Stamati, K., Donini, P., Laurie, D.A. and O’Sullivan, D.M. (2007b) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor. Appl. Genet. 115, 993–1001.Google Scholar
  15. Dahleen, L.S., Vander Wal, L.J. and Franckowiak, J.D. (2005) Characterization and molecular mapping of genes determining semidwarfism in barley. J. Hered. 96, 654–662.PubMedCrossRefGoogle Scholar
  16. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B. and Sarhan, F. (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860.PubMedCrossRefGoogle Scholar
  17. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M. and Yoshimura, A. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18, 926–936.PubMedCrossRefGoogle Scholar
  18. Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A. and Yan, Y. (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480.PubMedCrossRefGoogle Scholar
  19. Dunford, R.P., Griffiths, S., Christodoulou, V. and Laurie, D.A. (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110, 925–931.PubMedCrossRefGoogle Scholar
  20. Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.PubMedGoogle Scholar
  21. Faure, S., Higgins, J., Turner, A. and Laurie, D.A. (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599–609.PubMedCrossRefGoogle Scholar
  22. Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J.S., von Zitzewitz, J., Hayes, P.M. and Dubcovsky, J. (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics 273, 54–65.PubMedCrossRefGoogle Scholar
  23. Fu, D., Dunbar, M. and Dubcovsky, J. (2007) Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Mol. Genet. Genomics 277, 301–313.PubMedCrossRefGoogle Scholar
  24. Fu, X.D. and Harberd, N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743.PubMedCrossRefGoogle Scholar
  25. Griffiths, S., Dunford, R.P., Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS-like gene families in barley (Hordeum vulgare), rice (Oryza sativa) and Arabidopsis thaliana. Plant Physiol. 131, 1855–1867.PubMedCrossRefGoogle Scholar
  26. Hanocq, E., Laperche, A., Jaminon, O., Lainé, A.L. and Le Gouis, J. (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 114, 569–584.PubMedCrossRefGoogle Scholar
  27. Hemming, M.N., Peacock, W.J., Dennis, E.S. and Trevaskis, B. (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol. 147, 355–366.PubMedCrossRefGoogle Scholar
  28. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M. and Yamaguchi, J. (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010.PubMedCrossRefGoogle Scholar
  29. Itoh, J., Sato, Y., Nagato, Y. and Matsuoka, M. (2006) Formation, maintenance and function of the shoot apical meristem in rice. Plant Mol. Biol. 60, 827–842.PubMedCrossRefGoogle Scholar
  30. Iwaki, K., Nakagawa, K., Kuno, H. and Kato, K. (2000) Ecogeographical differentiation in east Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica 111, 137–143.CrossRefGoogle Scholar
  31. Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J.F., Limin, A.E., Fowler, D.B. and Sarhan, F. (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol. 138, 2354–2363.PubMedCrossRefGoogle Scholar
  32. Kane, N.A., Agharbaoui, Z., Diallo, A.O., Adam, H., Tominaga, Y., Ouellet, F. and Sarhan, F. (2007) TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J. [Epub ahead of print].Google Scholar
  33. Kellogg, E.A. (2007) Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31.PubMedCrossRefGoogle Scholar
  34. Kobayashi, Y. and Weigel, D. (2007) Move on up, it’s time for change – mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371–2384.PubMedCrossRefGoogle Scholar
  35. Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T. and Yano, M. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105.PubMedCrossRefGoogle Scholar
  36. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.PubMedCrossRefGoogle Scholar
  37. Law, C.N. and Worland, A.J. (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol. 137, 19–28.CrossRefGoogle Scholar
  38. Loukoianov, A., Yan, L.L., Blechl, A., Sanchez, A. and Dubcovsky, J. (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 138, 2364–2373.PubMedCrossRefGoogle Scholar
  39. Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J. and Kellogg, E.A. (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv. Bot. Res. 44, 425–481.CrossRefGoogle Scholar
  40. Mizuno, T. and Nakamichi, N. (2005) Pseudo-response regulators (PRRs) or True oscillator components (TOCs). Plant Cell Physiol. 46, 677–685.PubMedCrossRefGoogle Scholar
  41. Moore, G., Gale, M.D., Kurata, N. and Flavell, R.B. (1993) Molecular analysis of small grain cereal genomes: current status and prospects. Bio Technol. 11, 584–589.Google Scholar
  42. Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. (1995) Grasses, line up and form a circle. Curr. Biol. 5, 737–739.PubMedCrossRefGoogle Scholar
  43. Müller, K.J., Romano, N., Gerstner, O., Garcia-Marato, F., Pozzi, C., Salamini, F. and Rohde, W. (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374, 727–730.PubMedCrossRefGoogle Scholar
  44. Murai, K., Miyamae, M., Kato, H., Takumi, S. and Ogihara, Y. (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol. 44, 1255–1265.PubMedCrossRefGoogle Scholar
  45. Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205.PubMedCrossRefGoogle Scholar
  46. Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.PubMedCrossRefGoogle Scholar
  47. Pourkheirandish, M., Wicker, T., Stein, N., Fujimura, T. and Komatsuda, T. (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor. Appl. Genet. 114, 1357–1365.PubMedCrossRefGoogle Scholar
  48. Preston, J.C. and Kellogg, E.A. (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J. 52, 69–81.PubMedCrossRefGoogle Scholar
  49. Preston, J.C. and Kellogg, E.A. (2008) Discrete developmental roles for temperate cereal grass VRN1/FUL-like genes in flowering competency and the transition to flowering. Plant Physiol. 10.1104/pp.107.109561.Google Scholar
  50. Rossini, L., Vecchietti, A., Nicoloso, L., Stein, N., Franzago, S., Salamini, F. and Pozzi, C. (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor. Appl. Genet. 112, 1073–1085.PubMedCrossRefGoogle Scholar
  51. Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E., Li, B., Hainey, C.F., Radovic, S., Zaina, G., Rafalski, J.A., Tingey, S.V., Miao, G.H., Phillips, R.L. and Tuberosa, R. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104, 11376–11381.PubMedCrossRefGoogle Scholar
  52. Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H. and Jackson, D. (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.PubMedCrossRefGoogle Scholar
  53. Schmitz, R.J. and Amasino, R.M. (2007) Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim. Biophys. Acta 1769, 269–275.PubMedGoogle Scholar
  54. Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M. and Dean, C. (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173.PubMedCrossRefGoogle Scholar
  55. Shindo, C., Lister, C., Crevillen, P., Nordborg, M. and Dean, C. (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev. 20, 3079–3083.PubMedCrossRefGoogle Scholar
  56. Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S. and Murai, K. (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82, 167–170.PubMedCrossRefGoogle Scholar
  57. Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.-S., Gill, B.S. and Faris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.PubMedCrossRefGoogle Scholar
  58. Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N. and Facciotti, D. (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75–81.CrossRefGoogle Scholar
  59. Sreenivasulu, N., Graner, A. and Wobus, U. (2008) Barley genomics: an overview. Int. J. Plant Genomics doi: 10.1155/2008/486258.Google Scholar
  60. Sung, S.B. and Amasino, R.M. (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164.PubMedCrossRefGoogle Scholar
  61. Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 5, 477–485.CrossRefGoogle Scholar
  62. Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.S. (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 140, 1397–1405.PubMedCrossRefGoogle Scholar
  63. Trevaskis, B., Hemming, M.N., Dennis, E.S. and Peacock, W.J. (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12, 352–357.PubMedCrossRefGoogle Scholar
  64. Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.PubMedCrossRefGoogle Scholar
  65. Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350, 241–243.PubMedCrossRefGoogle Scholar
  66. von Zitzewitz, J., Szucs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H., Hayes, P.M. and Skinner, J.S. (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 59, 449–467.CrossRefGoogle Scholar
  67. Winichayakul, S., Beswick, N.L., Dean, C. and Macknight, R.C. (2005) Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. Funct. Plant Biol. 32, 345–355.CrossRefGoogle Scholar
  68. Worland, A.J. (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 49–57.CrossRefGoogle Scholar
  69. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.PubMedCrossRefGoogle Scholar
  70. Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004a) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.Google Scholar
  71. Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. and Dubcovsky, J. (2004b) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686.Google Scholar
  72. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky, J. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.PubMedCrossRefGoogle Scholar
  73. Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W. et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (0266–0281).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Crop GeneticsJohn Innes CentreUK

Personalised recommendations