Skip to main content

Developmental and Reproductive Traits in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

This chapter reviews what is known about genes that control the timing of flowering during the year or inflorescence development in the Triticeae, focusing on barley and wheat. The methods used to identify major genes controlling flowering in response to extended periods of low temperature (Vernalization; Vrn genes) or day length (Photoperiod; Ppd genes) and genes controlling inflorescence development are considered. This shows that direct candidate gene approaches have proved less effective than positional cloning or composite fine mapping/candidate gene methods. The implications for identifying new target genes are discussed. The analysis of genetic pathways identified in models is also considered as an aid to understanding how genes in the Triticeae affect phenotypic variation. Finally, the evolution of these traits under domestication is considered in relation to the finding that orthologous genes and similar mutations are found to be major contributors to adaptive variation in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J. and Harberd, N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Bäurle, I. and Dean, C. (2006) The timing of developmental transitions in plants. Cell 125, 655–664.

    Article  PubMed  Google Scholar 

  • Beales, J., Laurie, D.A. and Devos, K.M. (2005) Allelic variation at the linked AP1 and PhyC loci in hexaploid wheat is associated but not perfectly correlated with vernalization response. Theor. Appl. Genet. 110, 1099–1107.

    Article  PubMed  CAS  Google Scholar 

  • Beales, J., Turner, A., Griffiths, S., Snape, J.W. and Laurie, D.A. (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutation of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721–733.

    Article  PubMed  CAS  Google Scholar 

  • Benlloch, R., Berbel, A., Serrano-Mislata, A. and Madueno, F. (2007) Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676.

    Article  PubMed  Google Scholar 

  • Blanc, G., Hokamp, K. and Wolfe, K.H. (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Bommert, P., Satoh-Nagasawa, N., Jackson, D. and Hirano, H.Y. (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Bonnin, I., Rousset, M., Madur, D., Sourdille, P., Dupuits, C., Brunel, D. and Goldringer, I. (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116, 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, P.M., Marion-Poll, A., Ellis, M. and Gubler, F. (2002) Mutants at the Slender1 locus of barley cv Himalaya: molecular and physiological characterization. Plant Physiol. 129, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, G., Meeley, R.B. and Hake, S. (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, G., Meeley, R., Irish, E., Sakai, H. and Hake, S. (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet 39, 1517–1521.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.M., Wagler, T.N., Quijada, P. and Doebley, J. (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597.

    Article  PubMed  CAS  Google Scholar 

  • Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A. and Greenland, A.J. (2007a) Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J. Exp. Bot. 58, 1231–1244.

    Google Scholar 

  • Cockram, J., Chiapparino, E., Taylor, S.A., Stamati, K., Donini, P., Laurie, D.A. and O’Sullivan, D.M. (2007b) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor. Appl. Genet. 115, 993–1001.

    Google Scholar 

  • Dahleen, L.S., Vander Wal, L.J. and Franckowiak, J.D. (2005) Characterization and molecular mapping of genes determining semidwarfism in barley. J. Hered. 96, 654–662.

    Article  PubMed  CAS  Google Scholar 

  • Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B. and Sarhan, F. (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860.

    Article  PubMed  CAS  Google Scholar 

  • Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M. and Yoshimura, A. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18, 926–936.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A. and Yan, Y. (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480.

    Article  PubMed  CAS  Google Scholar 

  • Dunford, R.P., Griffiths, S., Christodoulou, V. and Laurie, D.A. (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110, 925–931.

    Article  PubMed  CAS  Google Scholar 

  • Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.

    PubMed  CAS  Google Scholar 

  • Faure, S., Higgins, J., Turner, A. and Laurie, D.A. (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J.S., von Zitzewitz, J., Hayes, P.M. and Dubcovsky, J. (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics 273, 54–65.

    Article  PubMed  CAS  Google Scholar 

  • Fu, D., Dunbar, M. and Dubcovsky, J. (2007) Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Mol. Genet. Genomics 277, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Fu, X.D. and Harberd, N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, S., Dunford, R.P., Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS-like gene families in barley (Hordeum vulgare), rice (Oryza sativa) and Arabidopsis thaliana. Plant Physiol. 131, 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  • Hanocq, E., Laperche, A., Jaminon, O., Lainé, A.L. and Le Gouis, J. (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 114, 569–584.

    Article  PubMed  CAS  Google Scholar 

  • Hemming, M.N., Peacock, W.J., Dennis, E.S. and Trevaskis, B. (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol. 147, 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M. and Yamaguchi, J. (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, J., Sato, Y., Nagato, Y. and Matsuoka, M. (2006) Formation, maintenance and function of the shoot apical meristem in rice. Plant Mol. Biol. 60, 827–842.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki, K., Nakagawa, K., Kuno, H. and Kato, K. (2000) Ecogeographical differentiation in east Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica 111, 137–143.

    Article  Google Scholar 

  • Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J.F., Limin, A.E., Fowler, D.B. and Sarhan, F. (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol. 138, 2354–2363.

    Article  PubMed  CAS  Google Scholar 

  • Kane, N.A., Agharbaoui, Z., Diallo, A.O., Adam, H., Tominaga, Y., Ouellet, F. and Sarhan, F. (2007) TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J. [Epub ahead of print].

    Google Scholar 

  • Kellogg, E.A. (2007) Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y. and Weigel, D. (2007) Move on up, it’s time for change – mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371–2384.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T. and Yano, M. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105.

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Law, C.N. and Worland, A.J. (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol. 137, 19–28.

    Article  Google Scholar 

  • Loukoianov, A., Yan, L.L., Blechl, A., Sanchez, A. and Dubcovsky, J. (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 138, 2364–2373.

    Article  PubMed  CAS  Google Scholar 

  • Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J. and Kellogg, E.A. (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv. Bot. Res. 44, 425–481.

    Article  CAS  Google Scholar 

  • Mizuno, T. and Nakamichi, N. (2005) Pseudo-response regulators (PRRs) or True oscillator components (TOCs). Plant Cell Physiol. 46, 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G., Gale, M.D., Kurata, N. and Flavell, R.B. (1993) Molecular analysis of small grain cereal genomes: current status and prospects. Bio Technol. 11, 584–589.

    CAS  Google Scholar 

  • Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. (1995) Grasses, line up and form a circle. Curr. Biol. 5, 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Müller, K.J., Romano, N., Gerstner, O., Garcia-Marato, F., Pozzi, C., Salamini, F. and Rohde, W. (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374, 727–730.

    Article  PubMed  Google Scholar 

  • Murai, K., Miyamae, M., Kato, H., Takumi, S. and Ogihara, Y. (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol. 44, 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish, M., Wicker, T., Stein, N., Fujimura, T. and Komatsuda, T. (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theor. Appl. Genet. 114, 1357–1365.

    Article  PubMed  CAS  Google Scholar 

  • Preston, J.C. and Kellogg, E.A. (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J. 52, 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Preston, J.C. and Kellogg, E.A. (2008) Discrete developmental roles for temperate cereal grass VRN1/FUL-like genes in flowering competency and the transition to flowering. Plant Physiol. 10.1104/pp.107.109561.

    Google Scholar 

  • Rossini, L., Vecchietti, A., Nicoloso, L., Stein, N., Franzago, S., Salamini, F. and Pozzi, C. (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor. Appl. Genet. 112, 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E., Li, B., Hainey, C.F., Radovic, S., Zaina, G., Rafalski, J.A., Tingey, S.V., Miao, G.H., Phillips, R.L. and Tuberosa, R. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104, 11376–11381.

    Article  PubMed  CAS  Google Scholar 

  • Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H. and Jackson, D. (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, R.J. and Amasino, R.M. (2007) Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim. Biophys. Acta 1769, 269–275.

    PubMed  CAS  Google Scholar 

  • Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M. and Dean, C. (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173.

    Article  PubMed  CAS  Google Scholar 

  • Shindo, C., Lister, C., Crevillen, P., Nordborg, M. and Dean, C. (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev. 20, 3079–3083.

    Article  PubMed  CAS  Google Scholar 

  • Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S. and Murai, K. (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.-S., Gill, B.S. and Faris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N. and Facciotti, D. (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75–81.

    Article  CAS  Google Scholar 

  • Sreenivasulu, N., Graner, A. and Wobus, U. (2008) Barley genomics: an overview. Int. J. Plant Genomics doi: 10.1155/2008/486258.

    Google Scholar 

  • Sung, S.B. and Amasino, R.M. (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 5, 477–485.

    Article  Google Scholar 

  • Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.S. (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol. 140, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis, B., Hemming, M.N., Dennis, E.S. and Peacock, W.J. (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • von Zitzewitz, J., Szucs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H., Hayes, P.M. and Skinner, J.S. (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 59, 449–467.

    Article  CAS  Google Scholar 

  • Winichayakul, S., Beswick, N.L., Dean, C. and Macknight, R.C. (2005) Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. Funct. Plant Biol. 32, 345–355.

    Article  CAS  Google Scholar 

  • Worland, A.J. (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 49–57.

    Article  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004a) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    Google Scholar 

  • Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. and Dubcovsky, J. (2004b) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686.

    Google Scholar 

  • Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky, J. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W. et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (0266–0281).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges support by the Biotechnology and Biological Sciences Research Council of Great Britain through grant-in-aid to the John Innes Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Laurie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laurie, D.A. (2009). Developmental and Reproductive Traits in the Triticeae. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_20

Download citation

Publish with us

Policies and ethics