Skip to main content

Genomics of Biotic Interactions in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

In the area of Triticeae-pathogen interactions, highly parallel profiling of the transcriptome and proteome has provided entry points to examine host reaction to various pathogens and pests. In particular, the molecular mechanisms underlying gene-for-gene resistance and basal defense have been explored in the contrasting contexts of host vs. nonhost resistance and biotrophic vs. necrotrophic pathogenesis. Capitalizing on a rich history of genetics, molecular biology and plant pathology, recent studies in the Triticeae have provided new insights and characterized previously undescribed phenomena. The unique features of various pathosystems are increasingly leveraged by breakthroughs in genomic technologies, facilitating a community-wide approach to unifying themes of molecular plant-microbe interactions in the Triticeae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfano, J.R. and Collmer, A. (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, J.M. and Ecker, J.R. (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat. Rev. Genet. 7, 524–536.

    Article  PubMed  CAS  Google Scholar 

  • Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., Dudler, R. and Schweizer, P. (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol. Biol. 57, 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Atienza, S.G., Jafary, H. and Niks, R.E. (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Axtell, M.J. and Staskawicz, B.J. (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.

    Article  PubMed  CAS  Google Scholar 

  • Barloy, D., Lemoine, J., Abelard, P., Tanguy, A., Rivoal, R. and Jahier, J. (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breed. 20, 31–40.

    Article  CAS  Google Scholar 

  • Bent, A.F. and Mackey, D. (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45, 399–436.

    Article  PubMed  CAS  Google Scholar 

  • Boddu, J., Cho, S., Kruger, W.M. and Muehlbauer, G.J. (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant Microbe Interact. 19, 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Boddu, J., Cho, S. and Muehlbauer, G.J. (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol. Plant Microbe Interact. 20, 1364–1375.

    Article  PubMed  CAS  Google Scholar 

  • Bonman, J.M., Bockelman, H.E., Jin, Y., Hijmans, R.J. and Gironella, A.I.N. (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci. 47, 1955–1963.

    Article  Google Scholar 

  • Both, M., Csukai, M., Stumpf, M.P. and Spanu, P.D. (2005) Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17, 2107–2122.

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Bruggmann, R., Abderhalden, O., Reymond, P. and Dudler, R. (2005) Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol. Biol. 58, 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Bushnell, W.R., Hayen, B.E. and Pritsch, C. (2003) Histology and physiology of Fusarium head blight. In: K.J. Leonard and W.R. Bushnell (Eds.), Fusarium Head Blight of Wheat And Barley. American Phytopathological Society Press, St. Paul, MN, USA, pp. 44–83.

    Google Scholar 

  • Caldo, R.A., Nettleton, D., Peng, J. and Wise, R.P. (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol. Plant Microbe Interact. 19, 939–947.

    Article  PubMed  CAS  Google Scholar 

  • Caldo, R.A., Nettleton, D. and Wise, R.P. (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16, 2514–2528.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, D.G., McCallum, N., Shaw, P., Muehlbauer, G.J., Marshall, D.F. and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J. 40, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M. and Kendziorski, C. (2007) A statistical framework for expression quantitative trait loci mapping. Genetics 177, 761–771.

    Article  PubMed  Google Scholar 

  • Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, C.F. and Meyerowitz, E.M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 4985–4990.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A. and Wise, R.P. (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol. 134, 960–968.

    Article  PubMed  CAS  Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Coram, T.E., Wang, M. and Chen, X. (2008) Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol. Plant Pathol. 9, 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Cuomo, C.A., Guldener, U., Xu, J.-R., Trail, F., Turgeon, B.G., Pietro, A.D., Walton, J., D., Ma, L.-J., Baker, S.E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y.-L., DeCaprio, D., Gale, L.R., Gnerre, S., Goswami, R.S., Hammond-Kosack, K., Harris, L.J., Hilburn, K., Kennell, J.C., Kroken, S., Magnuson, J.K., Mannhaupt, G., mauceli, E., Mewes, H.-W., Mitterbauer, G., Munsterkotter, M., Nelson, D., O'Donnell, K., Oueller, T., Qi, W., Quesneville, H., Roncero, M.I.G., Seong, K.-Y., Tetko, I.V., Urban, M., Wallwijk, C., Ward, T.J., Yao, J., Birren, B.W. and Kistler, H.C. (2007) The Fusarium graminearum genome reveals a link between localized polymoprhism and pathogen specialization. Science 317, 1400–1402.

    Article  PubMed  CAS  Google Scholar 

  • D'Arcy, C.J. and Burnett, P.A. (Eds.). (1995) Barley Yellow Dwarf: 40 Years of Progress. APS Press, St. Paul.

    Google Scholar 

  • Ding, X.S., Schneider, W.L., Chaluvadi, S.R., Mian, M.A. and Nelson, R.S. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol. Plant Microbe Interact. 19, 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  • Dong, W.B., Nowara, D. and Schweizer, P. (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18, 3321–3331.

    Article  PubMed  CAS  Google Scholar 

  • Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Interact. 18, 755–761.

    Article  PubMed  CAS  Google Scholar 

  • Eichmann, R., Biemelt, S., Schafer, P., Scholz, U., Jansen, C., Felk, A., Schafer, W., Langen, G., Sonnewald, U., Kogel, K.-H. and Huckelhoven, R. (2006) Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis. J. Plant Physiol. 163, 657–670.

    Article  PubMed  CAS  Google Scholar 

  • Eichmann, R., Schultheiss, H., Kogel, K.H. and Huckelhoven, R. (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol. Plant Microbe Interact. 17, 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, C., Zhou, F.S., Spielmeyer, W., Panstruga, R. and Schulze-Lefert, P. (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol. Plant Microbe Interact. 15, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J. (2006) Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell 18, 523–528.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J., Dodds, P. and Pryor, T. (2000) Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J.G., Dodds, P.N. and Lawrence, G.J. (2007) Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45, 289–306.

    Article  PubMed  CAS  Google Scholar 

  • Espinosa, A. and Alfano, J.R. (2004) Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell. Microbiol. 6, 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  • Fang, Y.-D., Akula, C. and Altpeter, F. (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 159, 1131–1138.

    Article  CAS  Google Scholar 

  • Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L. and Williams, L.E. (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132, 821–829.

    Article  PubMed  CAS  Google Scholar 

  • Gale, L.R., Bryant, J.D., Calvo, S., Giese, H., Katan, T., O'Donnell, K., Suga, H., Taga, M., Usgaard, T.R., Ward, T.J. and Kistler, H.C. (2005) Chromosome complement of the fungal plant paghogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171, 985–1001.

    Article  PubMed  CAS  Google Scholar 

  • Giovanini, M.P., Saltzmann, K.D., Puthoff, D.P., Gonzalo, M., Ohm, H.W. and Williams, C.E. (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Gjetting, T., Carver, T.L., Skot, L. and Lyngkjaer, M.F. (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol. Plant Microbe Interact. 17, 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Gjetting, T., Hagedorn, P.H., Schweizer, P., Thordal-Christensen, H., Carver, T.L.W. and Lyngkjær, M.F. (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol. Plant Microbe Interact. 20, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Göllner, K., Schweizer, P., Bai, Y. and Panstruga, R. (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected plasticity of RPW8-mediated powdery-mildew resistance. New Phytol. 177, 725–742.

    Google Scholar 

  • Goodwin, S.B, van der Lee, T.A.J., Cavaletto, J.R., Hekkert, B.t.L., Crane, C.F. and Kerma, G.H.J. (2007) Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola. Fungal Genet. Biol. 44, 398–414.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, R.S. and Kistler, H.C. (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Gray, S.M., Smith, D. and Sorrells, M. (1994) Reduction of disease incidence in small field plots by isolate-specific resistance to barley yellow dwarf virus. Phytopathology 84, 713–718.

    Article  Google Scholar 

  • Güldener, U., Seong, K.-Y., Boddu, J., Cho, S., Trail, F., Xu, J.-R., Adam, G., Mewes, H.-W., Muehlbauer, G.J. and Kistler, H.C. (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43, 316–325.

    Article  PubMed  CAS  Google Scholar 

  • Hakizimana, F., Ibrahim, A.M.H., Langham, M.A.C., Haley, S.D. and Rudd, J.C. (2004) Diallel analysis of wheat streak mosaic virus resistance in winter wheat. Crop Sci. 44, 89–92.

    Article  Google Scholar 

  • Halterman, D., Zhou, F., Wei, F., Wise, R.P. and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 25, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A., Wei, F. and Wise, R.P. (2003) Powdery mildew-Induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol. 131, 558–567.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A. and Wise, R.P. (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J. 38, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, D.A. and Wise, R.P. (2006) Upstream open reading frames of the barley Mla13 powdery mildew resistance gene function co-operatively to down-regulate translation. Mol. Plant Pathol. 7, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K.E. and Jones, J.D. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • Hane, J.K., Lowe, R.G.T., Solomon, P.S., Tan, K.-C., Schoch, C.L., Spatafora, J.W., Crous, P.W., Kodira, C., Birren, B.W., Galagan, J.E., Torriani, S.F.F., McDonald, B.A. and Oliver, R.P. (2007) Dothideomycete-Plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19, 3347–3368.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, B.G., Halkier, B.A. and Kliebenstein, D.J. (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 13, 72–77.

    Google Scholar 

  • Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J. and Rohfritsch, O. (2003) Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol. 48, 549–577.

    Article  PubMed  CAS  Google Scholar 

  • Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I.E., Sundar, S., Jarmolowski, A., Shirasu, K. and Lacomme, C. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol. 138, 2155–2164.

    Article  PubMed  CAS  Google Scholar 

  • Hensel, G., Valkov, V., Middlefell-Williams, J. and Kumlehn, J. (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J. Plant Physiol. 165, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Holzberg, S., Brosio, P., Gross, C. and Pogue, G.P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30, 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Horsley, R.D., Schmierer, D., Maier, C., Kudrna, D., Urrea, C.A., Steffenson, B.J., Schwarz, P.B., Franckowiak, J.D., Green, M.J., Zhang, B. and Kleinhofs, A. (2005) Identification of QTLs associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci. 46, 145–156.

    Article  CAS  Google Scholar 

  • Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Mapbased cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.

    PubMed  CAS  Google Scholar 

  • Huckelhoven, R., Dechert, C. and Kogel, K.H. (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. USA 100, 5555–5560.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, J., Venables, I., Wang, M.-B., Matthews, P., Ayliffe, M. and Gubler, F. (2006) Barley (Hordeum vulgare L.). In: Wang, K. (Ed.), Agrobacterium Protocols. Humana press, New Jersey, pp. 171–184.

    Google Scholar 

  • Jafary, H., Szabo, L.J. and Niks, R.E. (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol. Plant Microbe Interact. 19, 1270–1279.

    Article  PubMed  CAS  Google Scholar 

  • Janakiraman, V., Steinau, M., McCoy, S. and Trick, H. (2002) Recent advances in wheat transformation. In Vitro Cell. Dev. Biol. Plant 38, 404–414.

    Article  CAS  Google Scholar 

  • Jansen, R.C. and Nap, J.P. (2001) Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, M.K., Rung, J.H., Gregersen, P.L., Gjetting, T., Fuglsang, A.T., Hansen, M., Joehnk, N., Lyngkjaer, M.F. and Collinge, D.B. (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol. Biol. 65, 137–150.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, G.-L., Dong, Y., Shi, J. and Ward, R. (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor. Appl. Genet. 115, 1043–1052.

    Article  PubMed  Google Scholar 

  • Jin, Y., Pretorius, Z.A. and Singh, R.P. (2007) New virulence within race TTKS (Ug99) of the stem rust pathogen and effective resistance genes. Phytopathology 97, S137.

    Google Scholar 

  • Jin, Y. and Singh, R.P. (2006) Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis. 90, 476–480.

    Article  CAS  Google Scholar 

  • Jones, D.A. and Takemoto, D. (2004) Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H.D. (2005) Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci. 41, 137–147.

    Article  CAS  Google Scholar 

  • Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M.C., Somers, D.J. and Banks, T.W. (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol. J. 5, 442–453.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, J.H. (1994) Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 13, 97–119.

    Article  Google Scholar 

  • Kim, M.C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H.W., Park, H.C., Cho, M.J. and Schulze-Lefert, P. (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L. and Mackey, D. (2005) Two Pseudomonas syringae Type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Kling, J. (2005) The search for a sequencing thoroughbred. Nat. Biotechnol. 23, 1333–1335.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, D.Y., Tamaki, S.J. and Keen, N.T. (1989) Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pathovar tomato confer cultivar specificity on soybean. Proc. Natl. Acad. Sci. USA 86, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Kolmer, J.A. (2005) Tracking wheat rust on a continental scale. Curr. Opin. Plant Biol. 8, 441–449.

    Article  PubMed  Google Scholar 

  • Kong, L., Cambron, S. and Ohm, H. (2008) Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol. Breed. 21, 183–194.

    Article  CAS  Google Scholar 

  • Kong, L., Ohm, H.W., Cambron, S.E. and Williams, C.E. (2005) Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breed. 124, 525–531.

    Article  CAS  Google Scholar 

  • Kristensen, B.K., Ammitzboll, H., Rasmussen, S.K. and Nielsen, K.A. (2001) Transient expression of a vacuolar peroxidase increases susceptibility of epidermal barley cells to powdery mildew. Mol. Plant Pathol. 2, 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Lacomme, C., Hrubikova, K. and Hein, I. (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J. 34, 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, K.J. and Szabo, L.J. (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 6, 99–111.

    Article  PubMed  Google Scholar 

  • Leonova, I., Laikova, L., Popova, O., Unger, O., Börner, A. and Röder, M. (2007) Detection of quantitative trait loci for leaf rust resistance in wheat––T. timopheevii/T. tauschii introgression lines. Euphytica 155, 79–86.

    Article  Google Scholar 

  • Liu, X., Bai, J., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J., Harris, M., Stuart, J. and Chen, M.-S. (2007a) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194.

    Google Scholar 

  • Liu, X., Jianfa, B., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J.C., Harris, M., Stuart, J.J. and Chen, M.-S. (2007b) Gene expression of different wheat genotypes during attack by virulent and avirulent hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194.

    Google Scholar 

  • Lu, S., Sun, Y.-H., Amerson, H. and Chiang, V.L. (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J. 51, 1077–1098.

    Article  PubMed  CAS  Google Scholar 

  • Lyngkjaer, M.F., Carver, T.L.W. and Zeyen, R.J. (1997) Suppression of resistance to Erysiphe graminis f. sp. hordei conferred by the mlo5 barley powdery mildew resistance gene. Physiol. Mol. Plant Pathol. 50, 17–36.

    Article  CAS  Google Scholar 

  • Mackay, T.F.C. (2001) The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339.

    Article  PubMed  CAS  Google Scholar 

  • Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. and Dangl, J.L. (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J. and Ellis, J.G. (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 112, 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Makandar, R., Essig, J.S., Schapaugh, M.A., Trick, H.N. and Shah, J. (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant Microbe Interact. 19, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F. and Rothberg, J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  • Matsumura, K. and Tosa, Y. (1995) The rye mildew fungus carries avirulence genes corresponding to wheat genes for resistance to races of the wheat mildew fungus. Phytopathology 85, 753–756.

    Article  CAS  Google Scholar 

  • McKirdy, S.J., Jones, R.A.C. and Nutter, F.W. (2002) Quantification of yield losses caused by Barley yellow dwarf virus in wheat and oats. Phytopathology 86, 769–773.

    Google Scholar 

  • Mellersh, D. and Heath, M. (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol. Plant Microbe Interact. 16, 398–404.

    Article  PubMed  CAS  Google Scholar 

  • Mesterhazy, A., Bartok, T., Mirocha, C.G. and Komoroczy, R. (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118, 97–110.

    Article  CAS  Google Scholar 

  • Michelmore, R.W. and Meyers, B.C. (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130.

    PubMed  CAS  Google Scholar 

  • Miklis, M., Consonni, C., Bhat, R.A., Lipka, V., Schulze-Lefert, P. and Panstruga, R. (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 144, 1132–1143.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.A., Liu, S. and Beckett, R. (2002) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol. Plant Pathol. 3, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA 101, 4701–4705.

    Article  PubMed  CAS  Google Scholar 

  • Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W. and Gaut, B.S. (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 12, 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Muskett, P. and Parker, J. (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect. 5, 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J.D. (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J.D.G. (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135, 1113–1128.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, A.J. and Bushnell, W.R. (1997) Transient expression of anthocyanin genes in barley epidermal cells – potential for use in evaluation of disease response genes. Transgenic Res. 6, 233–244.

    Article  CAS  Google Scholar 

  • Nielsen, K., Olsen, O. and Oliver, R. (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol. Mol. Plant Pathol. 54, 1–12.

    Article  CAS  Google Scholar 

  • Noel, L., Moores, T.L., van Der Biezen, E.A., Parniske, M., Daniels, M.J., Parker, J.E. and Jones, J.D. (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11, 2099–2112.

    Article  PubMed  CAS  Google Scholar 

  • Nsarellah, N., Amri, A., Nachit, M.M., El Bouhssini, M. and Lhaloui, S. (2003) New durum wheat with Hessian fly resistance from Triticum araraticum and T. carthlicum in Morocco. Plant Breed. 122, 435–437.

    Article  Google Scholar 

  • Oliver, R.E., Cai, X., Xu, S.S., Chen, X. and Stack, R.W. (2005) Wheat-alien species derivatives: a novel source of resistance to fusarium head blight in wheat. Crop Sci. 45, 1353–1360.

    Article  Google Scholar 

  • Panstruga, R. (2004) A golden shot: how ballistic single cell transformation boosts the molecular analysis of cereal-mildew interactions. Mol. Plant Pathol. 5, 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D.W., Jenkinson, P. and McLeod, L. (1995) Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathol. 44, 207–238.

    Article  Google Scholar 

  • Pós, V., Halász, K., Mesterház, Á., Csôsz, L., Manninger, K., Hunyadi-Gulyás, É., Medzihradszky, K., Juhász, T. and Lukács, N. (2005) Proteomic investigation of wheat intercellular washing fluid. Acta Biol. Szeged 49, 31–32.

    Google Scholar 

  • Puthoff, D.P., Sardesai, N., Subramanyam, S., Nemacheck, J.A. and Williams, C.E. (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol. Plant Pathol. 6, 411–423.

    Article  PubMed  CAS  Google Scholar 

  • Rampitsch, C., Bykova, N.V., McCallum, B., Beimcik, E. and Ens, W. (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6, 1897–1907.

    Article  PubMed  CAS  Google Scholar 

  • Rockman, M.V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872.

    Article  PubMed  CAS  Google Scholar 

  • Roelfs, A.P. (1985) Wheat and rye stem rust. In: A.P. Roelfs and W.R. Bushnell (Eds.), The Cereal Rusts, Vol. 2. Academic Press, Orlando, FL, pp. 3–37.

    Google Scholar 

  • Rubiales, D., Carver, T.W.L. and Martin, A. (2001) Expression of resistance to Blumeria graminis f. sp. tritici in 'Chinese Spring' wheat addition lines containing chromosomes from Hordeum vulgare and H. chilense. Hereditas 134, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Ruge, B., Linz, A., Pickering, R., Proeseler, G., Greif, P. and Wehling, P. (2003) Mapping of Rym14(Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107, 965–971.

    Article  PubMed  CAS  Google Scholar 

  • Sardesai, N., Nemacheck, J., Subramanyam, S. and Williams, C. (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet. 111, 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, H., Dechert, C., Kogel, K.-H. and Huckelhoven, R. (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol. 128, 1447–1454.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, H., Dechert, C., Kogel, K.-H. and Huckelhoven, R. (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J. 36, 589–601.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, H., Hensel, G., Imani, J., Broeders, S., Sonnewald, U., Kogel, K.H., Kumlehn, J. and Huckelhoven, R. (2005) Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 139, 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, P. (2007) Nonhost resistance of plants to powdery mildew—New opportunities to unravel the mystery. Physiol. Mol. Plant Pathol. 70, 3–7.

    Article  CAS  Google Scholar 

  • Schweizer, P., Christoffel, A. and Dudler, R. (1999a) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J. 20, 541–552.

    Google Scholar 

  • Schweizer, P., Pokorny, J., Abderhalden, O. and Dudler, R. (1999b) A transient assay system for the functional assessment of defense-related genes in wheat. Mol. Plant Microbe Interact. 12, 647–654.

    Google Scholar 

  • Schweizer, P., Pokorny, J., Schulze-Lefert, P. and Dudler, R. (2000) Doublestranded RNA interferes with gene function at the single-cell level in cereals. Plant J. 24, 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, S.R., Huang, L., Brandt, A.S. and Gill, B.S. (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert, U. and Schweizer, P. (2005) A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Mol. Plant Microbe Interact. 18, 906–912.

    Article  PubMed  CAS  Google Scholar 

  • Serenius, M., Mironenko, N. and Manninen, O. (2005) Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycol. Res. 109, 809–817.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H., Ohm, H., Goulart, L., Lister, R., Appels, R. and Benlhabib, O. (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38, 406–413.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q., Bieri, S., Zhou, F., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependency in barley Mla disease resistance alleles to the powdery mildew fungus. Plant Cell 15, 732–744.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q.-H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I.E. and Schulze-Lefert, P. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315, 1098–1103.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C. and Schulze-Lefert, P. (1999a) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366.

    Google Scholar 

  • Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R.P. and Schulze-Lefert, P. (1999b) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J. 17, 293–299.

    Google Scholar 

  • Shirasu, K. and Schulze-Lefert, P. (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Sip, V., Sirlova, L. and Chrpova, J. (2006) Screening for barley yellow dwarf virus-resistant barley genotypes by assessment of virus content in inoculated seedlings. J. Phytopathol. 154, 336–342.

    Article  CAS  Google Scholar 

  • Skadsen, R. and Jing, P. (2008) Transcriptome profile of barley aleurone differs between total and polysomal RNAs: implications for proteome modeling. Mol. Breed. 21, 261–269.

    Article  CAS  Google Scholar 

  • Solomon, P.S., Lowe, R.G.T., Tan, K.-C., Walters, O.D.C. and Oliver, R.P. (2006) Stagonospora nordorum: cause of stagonospora nodorum blotch of wheat. Mol. Plant Pathol. 7, 147–156.

    Article  PubMed  Google Scholar 

  • Sreenivasulu, N., Altschmied, L., Panitz, R., Hähnel, U., Michalek, W., Weschke, W. and Wobus, U. (2001) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol. Genet. Genomics 266, 758–767.

    PubMed  Google Scholar 

  • Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895.

    Article  PubMed  CAS  Google Scholar 

  • Staal, J., Kaliff, M., Bohman, S. and Dixelius, C. (2006) Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 46, 218–230.

    Article  PubMed  CAS  Google Scholar 

  • Stokstad, E. (2007) Plant pathology: deadly wheat fungus threatens world's breadbaskets. Science 315, 1786–1787.

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam, S., Sardesai, N., Puthoff, D.P., Meyer, J.M., Nemacheck, J.A., Gonzalo, M. and Williams, C.E. (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170, 90–103.

    Article  CAS  Google Scholar 

  • Tai, Y.-S. and Bragg, J. (2007) Dual applications of a virus vector for studies of wheat-fungal interactions. Biotechnology 6, 288–291.

    Article  Google Scholar 

  • Tang, S.X., Zhuang, J.J., Wen, Y.X., Ai, S.J.A., Li, H.J. and Xu, J. (1997) Identification of introgressed segments conferring disease resistance in a tetrageneric hybrid of Triticum, Secale, Thinopyrum, and Avena. Genome 40, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. and Driscoll, M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen, H. (2003) Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Tooker, J.F. and De Moraes, C.M. (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol. Entomol. 32, 153–161.

    Article  Google Scholar 

  • Tosa, Y. (1989) Genetic analysis of the avirulence of wheatgrass powdery mildew fungus on common wheat. Genome 32, 913–917.

    Article  Google Scholar 

  • Trail, F., Xu, J.-R., Miguel, P.S., Halgren, R.G. and Corby Kistler, H. (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet. Biol. 38, 187–197.

    Article  PubMed  Google Scholar 

  • Trujillo, M., Altschmied, L., Schweizer, P., Kogel, K.H. and Huckelhoven, R. (2006) Respiratory Burst Oxidase Homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. J. Exp. Bot. 57, 3781–3791.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, M., Troeger, M., Niks, R.E., Kogel, K.H. and Huckelhoven, R. (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol. Plant Pathol. 5, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Yang, L., Xu, H., Li, Q., Ma, Z. and Chu, C. (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5, 4496–4503.

    Article  PubMed  CAS  Google Scholar 

  • Wanyera, R., Kinyua, M.G., Jin, Y. and Singh, R.P. (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in eastern Africa. Plant Dis. 90, 113.

    Article  Google Scholar 

  • Wei, F., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153, 1929–1948.

    PubMed  CAS  Google Scholar 

  • Wei, F., Wing, R.A. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903–1917.

    Article  PubMed  CAS  Google Scholar 

  • Williams, C.E., Collier, C.C., Nemacheck, J.A., Liang, C. and Cambron, S.E. (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 28, 1411–1428.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K., Willsmore, K., Olson, S., Matic, M. and Kuchel, H. (2006) Mapping of a novel QTL for resistance to cereal cyst nematode in wheat. Theor. Appl. Genet. 112, 1480–1486.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.B.H., Chan, E.K.F., Cowley, M.J. and Little, P.F.R. (2007) The influence of genetic variation on gene expression. Genome Res. 17, 1707–1716.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E.K. and Dickerson, J.A. (2007a) BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens. In: D. Edwards (Ed.), Methods in Molecular Biology, Vol. 406, Plant Bioinformatics – Methods and Protocols. Humana Press, Totowa, NJ, pp. 347–363.

    Google Scholar 

  • Wise, R.P., Moscou, M.J., Bogdanove, A.J. and Whitham, S.A. (2007b) Transcript profiling in host-pathogen interactions. Annu. Rev. Phytopathol. 45, 329–369.

    Google Scholar 

  • Yahiaoui, N., Brunner, S. and Keller, B. (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538.

    Article  PubMed  CAS  Google Scholar 

  • Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J.-K. and Sun, Q. (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8, R96.

    Article  PubMed  CAS  Google Scholar 

  • Zakhrabekova, S., Gamini Kannangara, C., von Wettstein, D. and Hansson, M. (2002) A microarray approach for identifying mutated genes. Plant Physiol. Biochem. 40, 189–197.

    Article  CAS  Google Scholar 

  • Zambino, P.J., Kubelik, A.R. and Szabo, L.J. (2000) Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology 90, 819–826.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Fetch, T., Nirmala, J., Schmierer, D., Brueggeman, R., Steffenson, B. and Kleinhofs, A. (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor. Appl. Genet. 113, 847–855.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., Liu, X. and Chen, M.S. (2006) H22, a major resistance gene to the Hessian fly (Mayetiola destructor), is mapped to the distal region of wheat chromosome 1DS. Theor. Appl. Genet. 113, 1491–1496.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F., Kurth, J., Wei, F., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., Li, S., Deng, Z., Wang, X., Chen, T., Zhang, J., Chen, S., Ling, H., Zhang, A., Wang, D. and Zhang, X. (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J. 52, 420–434.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Kolb, F.L. and Riechers, D.E. (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48, 770–780.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, G., Baumlein, H., Mock, H.P., Himmelbach, A. and Schweizer, P. (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol. 142, 181–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Pietro Spanu and Allen Miller for their contributions of unpublished data on the Bgh and BYDV sequencing projects, respectively. Funding for this research was provided by USDA-ARS CRIS Project 3625-21000-049-00D (RW, NL), USDA Initiative for Future Agriculture and Food Systems (IFAFS) grant no. 2001-52100-11346 (RW), NSF Plant Genome Program # 0500461 “ISGA-Functional Genomics of Plant Disease Defense Pathways” (RW), USDA-ARS CRIS Project 3640-21220-020-00D (LS), NSF Microbial Genome Sequencing grant EF-0412264 “Wheat Stem Rust Fungus Genome Sequencing Project” (LS), and German Ministry for Education and Research, Projects “BIC-GH-Bioinformatik Centrum Gatersleben-Halle” (PS), “GABI-nonhost” (PS), and BASF Plant Science Co. (PS).

This article is a joint contribution of the Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, and The Iowa Agriculture and Home Economics Experiment Station. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger P. Wise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wise, R.P., Lauter, N., Szabo, L., Schweizer, P. (2009). Genomics of Biotic Interactions in the Triticeae. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_19

Download citation

Publish with us

Policies and ethics