Genomics of Biotic Interactions in the Triticeae

  • Roger P. Wise
  • Nick Lauter
  • Les Szabo
  • Patrick Schweizer
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


In the area of Triticeae-pathogen interactions, highly parallel profiling of the transcriptome and proteome has provided entry points to examine host reaction to various pathogens and pests. In particular, the molecular mechanisms underlying gene-for-gene resistance and basal defense have been explored in the contrasting contexts of host vs. nonhost resistance and biotrophic vs. necrotrophic pathogenesis. Capitalizing on a rich history of genetics, molecular biology and plant pathology, recent studies in the Triticeae have provided new insights and characterized previously undescribed phenomena. The unique features of various pathosystems are increasingly leveraged by breakthroughs in genomic technologies, facilitating a community-wide approach to unifying themes of molecular plant-microbe interactions in the Triticeae.


Powdery Mildew Quantitative Trait Locus Mapping Stem Rust Rust Fungus Barley Yellow Dwarf Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Drs. Pietro Spanu and Allen Miller for their contributions of unpublished data on the Bgh and BYDV sequencing projects, respectively. Funding for this research was provided by USDA-ARS CRIS Project 3625-21000-049-00D (RW, NL), USDA Initiative for Future Agriculture and Food Systems (IFAFS) grant no. 2001-52100-11346 (RW), NSF Plant Genome Program # 0500461 “ISGA-Functional Genomics of Plant Disease Defense Pathways” (RW), USDA-ARS CRIS Project 3640-21220-020-00D (LS), NSF Microbial Genome Sequencing grant EF-0412264 “Wheat Stem Rust Fungus Genome Sequencing Project” (LS), and German Ministry for Education and Research, Projects “BIC-GH-Bioinformatik Centrum Gatersleben-Halle” (PS), “GABI-nonhost” (PS), and BASF Plant Science Co. (PS).

This article is a joint contribution of the Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, and The Iowa Agriculture and Home Economics Experiment Station. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.


  1. Alfano, J.R. and Collmer, A. (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414.PubMedCrossRefGoogle Scholar
  2. Alonso, J.M. and Ecker, J.R. (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat. Rev. Genet. 7, 524–536.PubMedCrossRefGoogle Scholar
  3. Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., Dudler, R. and Schweizer, P. (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol. Biol. 57, 271–283.PubMedCrossRefGoogle Scholar
  4. Atienza, S.G., Jafary, H. and Niks, R.E. (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220, 71–79.PubMedCrossRefGoogle Scholar
  5. Axtell, M.J. and Staskawicz, B.J. (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377.PubMedCrossRefGoogle Scholar
  6. Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.PubMedCrossRefGoogle Scholar
  7. Barloy, D., Lemoine, J., Abelard, P., Tanguy, A., Rivoal, R. and Jahier, J. (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breed. 20, 31–40.CrossRefGoogle Scholar
  8. Bent, A.F. and Mackey, D. (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45, 399–436.PubMedCrossRefGoogle Scholar
  9. Boddu, J., Cho, S., Kruger, W.M. and Muehlbauer, G.J. (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant Microbe Interact. 19, 407–417.PubMedCrossRefGoogle Scholar
  10. Boddu, J., Cho, S. and Muehlbauer, G.J. (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol. Plant Microbe Interact. 20, 1364–1375.PubMedCrossRefGoogle Scholar
  11. Bonman, J.M., Bockelman, H.E., Jin, Y., Hijmans, R.J. and Gironella, A.I.N. (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci. 47, 1955–1963.CrossRefGoogle Scholar
  12. Both, M., Csukai, M., Stumpf, M.P. and Spanu, P.D. (2005) Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17, 2107–2122.PubMedCrossRefGoogle Scholar
  13. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.PubMedCrossRefGoogle Scholar
  14. Bruggmann, R., Abderhalden, O., Reymond, P. and Dudler, R. (2005) Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol. Biol. 58, 247–267.PubMedCrossRefGoogle Scholar
  15. Bushnell, W.R., Hayen, B.E. and Pritsch, C. (2003) Histology and physiology of Fusarium head blight. In: K.J. Leonard and W.R. Bushnell (Eds.), Fusarium Head Blight of Wheat And Barley. American Phytopathological Society Press, St. Paul, MN, USA, pp. 44–83.Google Scholar
  16. Caldo, R.A., Nettleton, D., Peng, J. and Wise, R.P. (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol. Plant Microbe Interact. 19, 939–947.PubMedCrossRefGoogle Scholar
  17. Caldo, R.A., Nettleton, D. and Wise, R.P. (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16, 2514–2528.PubMedCrossRefGoogle Scholar
  18. Caldwell, D.G., McCallum, N., Shaw, P., Muehlbauer, G.J., Marshall, D.F. and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J. 40, 143–150.PubMedCrossRefGoogle Scholar
  19. Chen, M. and Kendziorski, C. (2007) A statistical framework for expression quantitative trait loci mapping. Genetics 177, 761–771.PubMedCrossRefGoogle Scholar
  20. Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814.PubMedCrossRefGoogle Scholar
  21. Chuang, C.F. and Meyerowitz, E.M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 4985–4990.PubMedCrossRefGoogle Scholar
  22. Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A. and Wise, R.P. (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol. 134, 960–968.PubMedCrossRefGoogle Scholar
  23. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.PubMedCrossRefGoogle Scholar
  24. Coram, T.E., Wang, M. and Chen, X. (2008) Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol. Plant Pathol. 9, 157–169.PubMedCrossRefGoogle Scholar
  25. Cuomo, C.A., Guldener, U., Xu, J.-R., Trail, F., Turgeon, B.G., Pietro, A.D., Walton, J., D., Ma, L.-J., Baker, S.E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y.-L., DeCaprio, D., Gale, L.R., Gnerre, S., Goswami, R.S., Hammond-Kosack, K., Harris, L.J., Hilburn, K., Kennell, J.C., Kroken, S., Magnuson, J.K., Mannhaupt, G., mauceli, E., Mewes, H.-W., Mitterbauer, G., Munsterkotter, M., Nelson, D., O'Donnell, K., Oueller, T., Qi, W., Quesneville, H., Roncero, M.I.G., Seong, K.-Y., Tetko, I.V., Urban, M., Wallwijk, C., Ward, T.J., Yao, J., Birren, B.W. and Kistler, H.C. (2007) The Fusarium graminearum genome reveals a link between localized polymoprhism and pathogen specialization. Science 317, 1400–1402.PubMedCrossRefGoogle Scholar
  26. D'Arcy, C.J. and Burnett, P.A. (Eds.). (1995) Barley Yellow Dwarf: 40 Years of Progress. APS Press, St. Paul.Google Scholar
  27. Ding, X.S., Schneider, W.L., Chaluvadi, S.R., Mian, M.A. and Nelson, R.S. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol. Plant Microbe Interact. 19, 1229–1239.PubMedCrossRefGoogle Scholar
  28. Dong, W.B., Nowara, D. and Schweizer, P. (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18, 3321–3331.PubMedCrossRefGoogle Scholar
  29. Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Interact. 18, 755–761.PubMedCrossRefGoogle Scholar
  30. Eichmann, R., Biemelt, S., Schafer, P., Scholz, U., Jansen, C., Felk, A., Schafer, W., Langen, G., Sonnewald, U., Kogel, K.-H. and Huckelhoven, R. (2006) Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis. J. Plant Physiol. 163, 657–670.PubMedCrossRefGoogle Scholar
  31. Eichmann, R., Schultheiss, H., Kogel, K.H. and Huckelhoven, R. (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol. Plant Microbe Interact. 17, 484–490.PubMedCrossRefGoogle Scholar
  32. Elliott, C., Zhou, F.S., Spielmeyer, W., Panstruga, R. and Schulze-Lefert, P. (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol. Plant Microbe Interact. 15, 1069–1077.PubMedCrossRefGoogle Scholar
  33. Ellis, J. (2006) Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell 18, 523–528.PubMedCrossRefGoogle Scholar
  34. Ellis, J., Dodds, P. and Pryor, T. (2000) Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284.PubMedCrossRefGoogle Scholar
  35. Ellis, J.G., Dodds, P.N. and Lawrence, G.J. (2007) Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45, 289–306.PubMedCrossRefGoogle Scholar
  36. Espinosa, A. and Alfano, J.R. (2004) Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell. Microbiol. 6, 1027–1040.PubMedCrossRefGoogle Scholar
  37. Fang, Y.-D., Akula, C. and Altpeter, F. (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 159, 1131–1138.CrossRefGoogle Scholar
  38. Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L. and Williams, L.E. (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132, 821–829.PubMedCrossRefGoogle Scholar
  39. Gale, L.R., Bryant, J.D., Calvo, S., Giese, H., Katan, T., O'Donnell, K., Suga, H., Taga, M., Usgaard, T.R., Ward, T.J. and Kistler, H.C. (2005) Chromosome complement of the fungal plant paghogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171, 985–1001.PubMedCrossRefGoogle Scholar
  40. Giovanini, M.P., Saltzmann, K.D., Puthoff, D.P., Gonzalo, M., Ohm, H.W. and Williams, C.E. (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8, 69–82.PubMedCrossRefGoogle Scholar
  41. Gjetting, T., Carver, T.L., Skot, L. and Lyngkjaer, M.F. (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol. Plant Microbe Interact. 17, 729–738.PubMedCrossRefGoogle Scholar
  42. Gjetting, T., Hagedorn, P.H., Schweizer, P., Thordal-Christensen, H., Carver, T.L.W. and Lyngkjær, M.F. (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol. Plant Microbe Interact. 20, 235–246.PubMedCrossRefGoogle Scholar
  43. Göllner, K., Schweizer, P., Bai, Y. and Panstruga, R. (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected plasticity of RPW8-mediated powdery-mildew resistance. New Phytol. 177, 725–742.Google Scholar
  44. Goodwin, S.B, van der Lee, T.A.J., Cavaletto, J.R., Hekkert, B.t.L., Crane, C.F. and Kerma, G.H.J. (2007) Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola. Fungal Genet. Biol. 44, 398–414.PubMedCrossRefGoogle Scholar
  45. Goswami, R.S. and Kistler, H.C. (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525.PubMedCrossRefGoogle Scholar
  46. Gray, S.M., Smith, D. and Sorrells, M. (1994) Reduction of disease incidence in small field plots by isolate-specific resistance to barley yellow dwarf virus. Phytopathology 84, 713–718.CrossRefGoogle Scholar
  47. Güldener, U., Seong, K.-Y., Boddu, J., Cho, S., Trail, F., Xu, J.-R., Adam, G., Mewes, H.-W., Muehlbauer, G.J. and Kistler, H.C. (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43, 316–325.PubMedCrossRefGoogle Scholar
  48. Hakizimana, F., Ibrahim, A.M.H., Langham, M.A.C., Haley, S.D. and Rudd, J.C. (2004) Diallel analysis of wheat streak mosaic virus resistance in winter wheat. Crop Sci. 44, 89–92.CrossRefGoogle Scholar
  49. Halterman, D., Zhou, F., Wei, F., Wise, R.P. and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 25, 335–348.PubMedCrossRefGoogle Scholar
  50. Halterman, D.A., Wei, F. and Wise, R.P. (2003) Powdery mildew-Induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol. 131, 558–567.PubMedCrossRefGoogle Scholar
  51. Halterman, D.A. and Wise, R.P. (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J. 38, 215–226.PubMedCrossRefGoogle Scholar
  52. Halterman, D.A. and Wise, R.P. (2006) Upstream open reading frames of the barley Mla13 powdery mildew resistance gene function co-operatively to down-regulate translation. Mol. Plant Pathol. 7, 167–176.PubMedCrossRefGoogle Scholar
  53. Hammond-Kosack, K.E. and Jones, J.D. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791.PubMedCrossRefGoogle Scholar
  54. Hane, J.K., Lowe, R.G.T., Solomon, P.S., Tan, K.-C., Schoch, C.L., Spatafora, J.W., Crous, P.W., Kodira, C., Birren, B.W., Galagan, J.E., Torriani, S.F.F., McDonald, B.A. and Oliver, R.P. (2007) Dothideomycete-Plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19, 3347–3368.PubMedCrossRefGoogle Scholar
  55. Hansen, B.G., Halkier, B.A. and Kliebenstein, D.J. (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci. 13, 72–77.Google Scholar
  56. Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J. and Rohfritsch, O. (2003) Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol. 48, 549–577.PubMedCrossRefGoogle Scholar
  57. Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I.E., Sundar, S., Jarmolowski, A., Shirasu, K. and Lacomme, C. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol. 138, 2155–2164.PubMedCrossRefGoogle Scholar
  58. Hensel, G., Valkov, V., Middlefell-Williams, J. and Kumlehn, J. (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J. Plant Physiol. 165, 71–82.PubMedCrossRefGoogle Scholar
  59. Holzberg, S., Brosio, P., Gross, C. and Pogue, G.P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30, 315–327.PubMedCrossRefGoogle Scholar
  60. Horsley, R.D., Schmierer, D., Maier, C., Kudrna, D., Urrea, C.A., Steffenson, B.J., Schwarz, P.B., Franckowiak, J.D., Green, M.J., Zhang, B. and Kleinhofs, A. (2005) Identification of QTLs associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci. 46, 145–156.CrossRefGoogle Scholar
  61. Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Mapbased cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.PubMedGoogle Scholar
  62. Huckelhoven, R., Dechert, C. and Kogel, K.H. (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. USA 100, 5555–5560.PubMedCrossRefGoogle Scholar
  63. Jacobsen, J., Venables, I., Wang, M.-B., Matthews, P., Ayliffe, M. and Gubler, F. (2006) Barley (Hordeum vulgare L.). In: Wang, K. (Ed.), Agrobacterium Protocols. Humana press, New Jersey, pp. 171–184.Google Scholar
  64. Jafary, H., Szabo, L.J. and Niks, R.E. (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol. Plant Microbe Interact. 19, 1270–1279.PubMedCrossRefGoogle Scholar
  65. Janakiraman, V., Steinau, M., McCoy, S. and Trick, H. (2002) Recent advances in wheat transformation. In Vitro Cell. Dev. Biol. Plant 38, 404–414.CrossRefGoogle Scholar
  66. Jansen, R.C. and Nap, J.P. (2001) Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391.PubMedCrossRefGoogle Scholar
  67. Jensen, M.K., Rung, J.H., Gregersen, P.L., Gjetting, T., Fuglsang, A.T., Hansen, M., Joehnk, N., Lyngkjaer, M.F. and Collinge, D.B. (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol. Biol. 65, 137–150.PubMedCrossRefGoogle Scholar
  68. Jiang, G.-L., Dong, Y., Shi, J. and Ward, R. (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor. Appl. Genet. 115, 1043–1052.PubMedCrossRefGoogle Scholar
  69. Jin, Y., Pretorius, Z.A. and Singh, R.P. (2007) New virulence within race TTKS (Ug99) of the stem rust pathogen and effective resistance genes. Phytopathology 97, S137.Google Scholar
  70. Jin, Y. and Singh, R.P. (2006) Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis. 90, 476–480.CrossRefGoogle Scholar
  71. Jones, D.A. and Takemoto, D. (2004) Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 48–62.PubMedCrossRefGoogle Scholar
  72. Jones, H.D. (2005) Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci. 41, 137–147.CrossRefGoogle Scholar
  73. Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature 444, 323–329.PubMedCrossRefGoogle Scholar
  74. Jordan, M.C., Somers, D.J. and Banks, T.W. (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol. J. 5, 442–453.PubMedCrossRefGoogle Scholar
  75. Jørgensen, J.H. (1994) Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 13, 97–119.CrossRefGoogle Scholar
  76. Kim, M.C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H.W., Park, H.C., Cho, M.J. and Schulze-Lefert, P. (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447–451.PubMedCrossRefGoogle Scholar
  77. Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L. and Mackey, D. (2005) Two Pseudomonas syringae Type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759.PubMedCrossRefGoogle Scholar
  78. Kling, J. (2005) The search for a sequencing thoroughbred. Nat. Biotechnol. 23, 1333–1335.PubMedCrossRefGoogle Scholar
  79. Kobayashi, D.Y., Tamaki, S.J. and Keen, N.T. (1989) Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pathovar tomato confer cultivar specificity on soybean. Proc. Natl. Acad. Sci. USA 86, 157–161.PubMedCrossRefGoogle Scholar
  80. Kolmer, J.A. (2005) Tracking wheat rust on a continental scale. Curr. Opin. Plant Biol. 8, 441–449.PubMedCrossRefGoogle Scholar
  81. Kong, L., Cambron, S. and Ohm, H. (2008) Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol. Breed. 21, 183–194.CrossRefGoogle Scholar
  82. Kong, L., Ohm, H.W., Cambron, S.E. and Williams, C.E. (2005) Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breed. 124, 525–531.CrossRefGoogle Scholar
  83. Kristensen, B.K., Ammitzboll, H., Rasmussen, S.K. and Nielsen, K.A. (2001) Transient expression of a vacuolar peroxidase increases susceptibility of epidermal barley cells to powdery mildew. Mol. Plant Pathol. 2, 311–317.PubMedCrossRefGoogle Scholar
  84. Lacomme, C., Hrubikova, K. and Hein, I. (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J. 34, 543–553.PubMedCrossRefGoogle Scholar
  85. Leonard, K.J. and Szabo, L.J. (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 6, 99–111.PubMedCrossRefGoogle Scholar
  86. Leonova, I., Laikova, L., Popova, O., Unger, O., Börner, A. and Röder, M. (2007) Detection of quantitative trait loci for leaf rust resistance in wheat––T. timopheevii/T. tauschii introgression lines. Euphytica 155, 79–86.CrossRefGoogle Scholar
  87. Liu, X., Bai, J., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J., Harris, M., Stuart, J. and Chen, M.-S. (2007a) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194.Google Scholar
  88. Liu, X., Jianfa, B., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J.C., Harris, M., Stuart, J.J. and Chen, M.-S. (2007b) Gene expression of different wheat genotypes during attack by virulent and avirulent hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194.Google Scholar
  89. Lu, S., Sun, Y.-H., Amerson, H. and Chiang, V.L. (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J. 51, 1077–1098.PubMedCrossRefGoogle Scholar
  90. Lyngkjaer, M.F., Carver, T.L.W. and Zeyen, R.J. (1997) Suppression of resistance to Erysiphe graminis f. sp. hordei conferred by the mlo5 barley powdery mildew resistance gene. Physiol. Mol. Plant Pathol. 50, 17–36.CrossRefGoogle Scholar
  91. Mackay, T.F.C. (2001) The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339.PubMedCrossRefGoogle Scholar
  92. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. and Dangl, J.L. (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389.PubMedCrossRefGoogle Scholar
  93. Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J. and Ellis, J.G. (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 112, 41–50.PubMedCrossRefGoogle Scholar
  94. Makandar, R., Essig, J.S., Schapaugh, M.A., Trick, H.N. and Shah, J. (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant Microbe Interact. 19, 123–129.PubMedCrossRefGoogle Scholar
  95. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F. and Rothberg, J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  96. Matsumura, K. and Tosa, Y. (1995) The rye mildew fungus carries avirulence genes corresponding to wheat genes for resistance to races of the wheat mildew fungus. Phytopathology 85, 753–756.CrossRefGoogle Scholar
  97. McKirdy, S.J., Jones, R.A.C. and Nutter, F.W. (2002) Quantification of yield losses caused by Barley yellow dwarf virus in wheat and oats. Phytopathology 86, 769–773.Google Scholar
  98. Mellersh, D. and Heath, M. (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol. Plant Microbe Interact. 16, 398–404.PubMedCrossRefGoogle Scholar
  99. Mesterhazy, A., Bartok, T., Mirocha, C.G. and Komoroczy, R. (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118, 97–110.CrossRefGoogle Scholar
  100. Michelmore, R.W. and Meyers, B.C. (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130.PubMedGoogle Scholar
  101. Miklis, M., Consonni, C., Bhat, R.A., Lipka, V., Schulze-Lefert, P. and Panstruga, R. (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 144, 1132–1143.PubMedCrossRefGoogle Scholar
  102. Miller, W.A., Liu, S. and Beckett, R. (2002) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol. Plant Pathol. 3, 177–183.PubMedCrossRefGoogle Scholar
  103. Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA 101, 4701–4705.PubMedCrossRefGoogle Scholar
  104. Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W. and Gaut, B.S. (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 12, 1305–1315.PubMedCrossRefGoogle Scholar
  105. Muskett, P. and Parker, J. (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect. 5, 969–976.PubMedCrossRefGoogle Scholar
  106. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J.D. (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439.PubMedCrossRefGoogle Scholar
  107. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J.D.G. (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135, 1113–1128.PubMedCrossRefGoogle Scholar
  108. Nelson, A.J. and Bushnell, W.R. (1997) Transient expression of anthocyanin genes in barley epidermal cells – potential for use in evaluation of disease response genes. Transgenic Res. 6, 233–244.CrossRefGoogle Scholar
  109. Nielsen, K., Olsen, O. and Oliver, R. (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol. Mol. Plant Pathol. 54, 1–12.CrossRefGoogle Scholar
  110. Noel, L., Moores, T.L., van Der Biezen, E.A., Parniske, M., Daniels, M.J., Parker, J.E. and Jones, J.D. (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11, 2099–2112.PubMedCrossRefGoogle Scholar
  111. Nsarellah, N., Amri, A., Nachit, M.M., El Bouhssini, M. and Lhaloui, S. (2003) New durum wheat with Hessian fly resistance from Triticum araraticum and T. carthlicum in Morocco. Plant Breed. 122, 435–437.CrossRefGoogle Scholar
  112. Oliver, R.E., Cai, X., Xu, S.S., Chen, X. and Stack, R.W. (2005) Wheat-alien species derivatives: a novel source of resistance to fusarium head blight in wheat. Crop Sci. 45, 1353–1360.CrossRefGoogle Scholar
  113. Panstruga, R. (2004) A golden shot: how ballistic single cell transformation boosts the molecular analysis of cereal-mildew interactions. Mol. Plant Pathol. 5, 141–148.PubMedCrossRefGoogle Scholar
  114. Parry, D.W., Jenkinson, P. and McLeod, L. (1995) Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathol. 44, 207–238.CrossRefGoogle Scholar
  115. Pós, V., Halász, K., Mesterház, Á., Csôsz, L., Manninger, K., Hunyadi-Gulyás, É., Medzihradszky, K., Juhász, T. and Lukács, N. (2005) Proteomic investigation of wheat intercellular washing fluid. Acta Biol. Szeged 49, 31–32.Google Scholar
  116. Puthoff, D.P., Sardesai, N., Subramanyam, S., Nemacheck, J.A. and Williams, C.E. (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol. Plant Pathol. 6, 411–423.PubMedCrossRefGoogle Scholar
  117. Rampitsch, C., Bykova, N.V., McCallum, B., Beimcik, E. and Ens, W. (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6, 1897–1907.PubMedCrossRefGoogle Scholar
  118. Rockman, M.V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872.PubMedCrossRefGoogle Scholar
  119. Roelfs, A.P. (1985) Wheat and rye stem rust. In: A.P. Roelfs and W.R. Bushnell (Eds.), The Cereal Rusts, Vol. 2. Academic Press, Orlando, FL, pp. 3–37.Google Scholar
  120. Rubiales, D., Carver, T.W.L. and Martin, A. (2001) Expression of resistance to Blumeria graminis f. sp. tritici in 'Chinese Spring' wheat addition lines containing chromosomes from Hordeum vulgare and H. chilense. Hereditas 134, 53–57.PubMedCrossRefGoogle Scholar
  121. Ruge, B., Linz, A., Pickering, R., Proeseler, G., Greif, P. and Wehling, P. (2003) Mapping of Rym14(Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor. Appl. Genet. 107, 965–971.PubMedCrossRefGoogle Scholar
  122. Sardesai, N., Nemacheck, J., Subramanyam, S. and Williams, C. (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet. 111, 1167–1173.PubMedCrossRefGoogle Scholar
  123. Schultheiss, H., Dechert, C., Kogel, K.-H. and Huckelhoven, R. (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol. 128, 1447–1454.PubMedCrossRefGoogle Scholar
  124. Schultheiss, H., Dechert, C., Kogel, K.-H. and Huckelhoven, R. (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J. 36, 589–601.PubMedCrossRefGoogle Scholar
  125. Schultheiss, H., Hensel, G., Imani, J., Broeders, S., Sonnewald, U., Kogel, K.H., Kumlehn, J. and Huckelhoven, R. (2005) Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 139, 353–362.PubMedCrossRefGoogle Scholar
  126. Schweizer, P. (2007) Nonhost resistance of plants to powdery mildew—New opportunities to unravel the mystery. Physiol. Mol. Plant Pathol. 70, 3–7.CrossRefGoogle Scholar
  127. Schweizer, P., Christoffel, A. and Dudler, R. (1999a) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J. 20, 541–552.Google Scholar
  128. Schweizer, P., Pokorny, J., Abderhalden, O. and Dudler, R. (1999b) A transient assay system for the functional assessment of defense-related genes in wheat. Mol. Plant Microbe Interact. 12, 647–654.Google Scholar
  129. Schweizer, P., Pokorny, J., Schulze-Lefert, P. and Dudler, R. (2000) Doublestranded RNA interferes with gene function at the single-cell level in cereals. Plant J. 24, 895–903.PubMedCrossRefGoogle Scholar
  130. Scofield, S.R., Huang, L., Brandt, A.S. and Gill, B.S. (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.PubMedCrossRefGoogle Scholar
  131. Seiffert, U. and Schweizer, P. (2005) A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Mol. Plant Microbe Interact. 18, 906–912.PubMedCrossRefGoogle Scholar
  132. Serenius, M., Mironenko, N. and Manninen, O. (2005) Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycol. Res. 109, 809–817.PubMedCrossRefGoogle Scholar
  133. Sharma, H., Ohm, H., Goulart, L., Lister, R., Appels, R. and Benlhabib, O. (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38, 406–413.PubMedCrossRefGoogle Scholar
  134. Shen, Q., Bieri, S., Zhou, F., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependency in barley Mla disease resistance alleles to the powdery mildew fungus. Plant Cell 15, 732–744.PubMedCrossRefGoogle Scholar
  135. Shen, Q.-H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I.E. and Schulze-Lefert, P. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315, 1098–1103.PubMedCrossRefGoogle Scholar
  136. Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C. and Schulze-Lefert, P. (1999a) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366.Google Scholar
  137. Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R.P. and Schulze-Lefert, P. (1999b) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J. 17, 293–299.Google Scholar
  138. Shirasu, K. and Schulze-Lefert, P. (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8, 252–258.PubMedCrossRefGoogle Scholar
  139. Sip, V., Sirlova, L. and Chrpova, J. (2006) Screening for barley yellow dwarf virus-resistant barley genotypes by assessment of virus content in inoculated seedlings. J. Phytopathol. 154, 336–342.CrossRefGoogle Scholar
  140. Skadsen, R. and Jing, P. (2008) Transcriptome profile of barley aleurone differs between total and polysomal RNAs: implications for proteome modeling. Mol. Breed. 21, 261–269.CrossRefGoogle Scholar
  141. Solomon, P.S., Lowe, R.G.T., Tan, K.-C., Walters, O.D.C. and Oliver, R.P. (2006) Stagonospora nordorum: cause of stagonospora nodorum blotch of wheat. Mol. Plant Pathol. 7, 147–156.PubMedCrossRefGoogle Scholar
  142. Sreenivasulu, N., Altschmied, L., Panitz, R., Hähnel, U., Michalek, W., Weschke, W. and Wobus, U. (2001) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol. Genet. Genomics 266, 758–767.PubMedGoogle Scholar
  143. Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895.PubMedCrossRefGoogle Scholar
  144. Staal, J., Kaliff, M., Bohman, S. and Dixelius, C. (2006) Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 46, 218–230.PubMedCrossRefGoogle Scholar
  145. Stokstad, E. (2007) Plant pathology: deadly wheat fungus threatens world's breadbaskets. Science 315, 1786–1787.PubMedCrossRefGoogle Scholar
  146. Subramanyam, S., Sardesai, N., Puthoff, D.P., Meyer, J.M., Nemacheck, J.A., Gonzalo, M. and Williams, C.E. (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170, 90–103.CrossRefGoogle Scholar
  147. Tai, Y.-S. and Bragg, J. (2007) Dual applications of a virus vector for studies of wheat-fungal interactions. Biotechnology 6, 288–291.CrossRefGoogle Scholar
  148. Tang, S.X., Zhuang, J.J., Wen, Y.X., Ai, S.J.A., Li, H.J. and Xu, J. (1997) Identification of introgressed segments conferring disease resistance in a tetrageneric hybrid of Triticum, Secale, Thinopyrum, and Avena. Genome 40, 99–103.PubMedCrossRefGoogle Scholar
  149. Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. and Driscoll, M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–183.PubMedCrossRefGoogle Scholar
  150. Thordal-Christensen, H. (2003) Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6, 351–357.PubMedCrossRefGoogle Scholar
  151. Tooker, J.F. and De Moraes, C.M. (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol. Entomol. 32, 153–161.CrossRefGoogle Scholar
  152. Tosa, Y. (1989) Genetic analysis of the avirulence of wheatgrass powdery mildew fungus on common wheat. Genome 32, 913–917.CrossRefGoogle Scholar
  153. Trail, F., Xu, J.-R., Miguel, P.S., Halgren, R.G. and Corby Kistler, H. (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet. Biol. 38, 187–197.PubMedCrossRefGoogle Scholar
  154. Trujillo, M., Altschmied, L., Schweizer, P., Kogel, K.H. and Huckelhoven, R. (2006) Respiratory Burst Oxidase Homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. J. Exp. Bot. 57, 3781–3791.PubMedCrossRefGoogle Scholar
  155. Trujillo, M., Troeger, M., Niks, R.E., Kogel, K.H. and Huckelhoven, R. (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol. Plant Pathol. 5, 389–396.PubMedCrossRefGoogle Scholar
  156. Wang, Y., Yang, L., Xu, H., Li, Q., Ma, Z. and Chu, C. (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5, 4496–4503.PubMedCrossRefGoogle Scholar
  157. Wanyera, R., Kinyua, M.G., Jin, Y. and Singh, R.P. (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in eastern Africa. Plant Dis. 90, 113.CrossRefGoogle Scholar
  158. Wei, F., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153, 1929–1948.PubMedGoogle Scholar
  159. Wei, F., Wing, R.A. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903–1917.PubMedCrossRefGoogle Scholar
  160. Williams, C.E., Collier, C.C., Nemacheck, J.A., Liang, C. and Cambron, S.E. (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 28, 1411–1428.PubMedCrossRefGoogle Scholar
  161. Williams, K., Willsmore, K., Olson, S., Matic, M. and Kuchel, H. (2006) Mapping of a novel QTL for resistance to cereal cyst nematode in wheat. Theor. Appl. Genet. 112, 1480–1486.PubMedCrossRefGoogle Scholar
  162. Williams, R.B.H., Chan, E.K.F., Cowley, M.J. and Little, P.F.R. (2007) The influence of genetic variation on gene expression. Genome Res. 17, 1707–1716.PubMedCrossRefGoogle Scholar
  163. Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E.K. and Dickerson, J.A. (2007a) BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens. In: D. Edwards (Ed.), Methods in Molecular Biology, Vol. 406, Plant Bioinformatics – Methods and Protocols. Humana Press, Totowa, NJ, pp. 347–363.Google Scholar
  164. Wise, R.P., Moscou, M.J., Bogdanove, A.J. and Whitham, S.A. (2007b) Transcript profiling in host-pathogen interactions. Annu. Rev. Phytopathol. 45, 329–369.Google Scholar
  165. Yahiaoui, N., Brunner, S. and Keller, B. (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 85–98.PubMedCrossRefGoogle Scholar
  166. Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538.PubMedCrossRefGoogle Scholar
  167. Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J.-K. and Sun, Q. (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8, R96.PubMedCrossRefGoogle Scholar
  168. Zakhrabekova, S., Gamini Kannangara, C., von Wettstein, D. and Hansson, M. (2002) A microarray approach for identifying mutated genes. Plant Physiol. Biochem. 40, 189–197.CrossRefGoogle Scholar
  169. Zambino, P.J., Kubelik, A.R. and Szabo, L.J. (2000) Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology 90, 819–826.PubMedCrossRefGoogle Scholar
  170. Zhang, L., Fetch, T., Nirmala, J., Schmierer, D., Brueggeman, R., Steffenson, B. and Kleinhofs, A. (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor. Appl. Genet. 113, 847–855.PubMedCrossRefGoogle Scholar
  171. Zhao, H., Liu, X. and Chen, M.S. (2006) H22, a major resistance gene to the Hessian fly (Mayetiola destructor), is mapped to the distal region of wheat chromosome 1DS. Theor. Appl. Genet. 113, 1491–1496.PubMedCrossRefGoogle Scholar
  172. Zhou, F., Kurth, J., Wei, F., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337–350.PubMedCrossRefGoogle Scholar
  173. Zhou, H., Li, S., Deng, Z., Wang, X., Chen, T., Zhang, J., Chen, S., Ling, H., Zhang, A., Wang, D. and Zhang, X. (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J. 52, 420–434.PubMedCrossRefGoogle Scholar
  174. Zhou, W., Kolb, F.L. and Riechers, D.E. (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48, 770–780.PubMedCrossRefGoogle Scholar
  175. Zimmermann, G., Baumlein, H., Mock, H.P., Himmelbach, A. and Schweizer, P. (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol. 142, 181–192.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roger P. Wise
    • 1
  • Nick Lauter
    • 1
  • Les Szabo
    • 2
  • Patrick Schweizer
    • 3
  1. 1.Corn Insects and Crop Genetics Research, USDA-ARS, Department of Plant Pathology and Center for Plant Responses to Environmental StressesIowa State UniversityAmesUSA
  2. 2.Cereal Disease Laboratory, USDA-ARSUniversity of MinnesotaSt. PaulUSA
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations