Brachypodium distachyon, a New Model for the Triticeae

  • John Vogel
  • Jennifer Bragg
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Brachypodium distachyon (Brachypodium) is a small annual grass with biological, physical and genomic attributes (e.g. rapid cycling, small stature, inbreeding, small genome, diploid accessions) suitable for use as a modern model system. In pursuit of this goal, researchers have made rapid progress in developing genomic resources that will transform Brachypodium into a powerful model system including: facile Agrobacterium-mediated transformation methods, BAC libraries, physical maps, genetic maps, and germplasm resources. In addition, a preliminary 4x draft of the entire genome has been released, and completion of the final 8x assembly is anticipated in 2009. This chapter provides an overview of the advantages of Brachypodium as a model system and surveys the use and potential applications of this system to aid wheat, barley and Lolium research.


Internal Transcribe Spacer Bacterial Artificial Chromosome Embryogenic Callus Bacterial Artificial Chromosome Clone Bacterial Artificial Chromosome Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by USDA CRIS project 5325-21000-013-00 “Biotechnological Enhancement of Energy Crops” and by the Office of Science (BER), U.S. Department of Energy, Interagency Agreement No. DE-AI02-07ER64452.


  1. Adams, M., Kelley, J., Dubnick, M., Polymeropoulos, M., Xiao, H., Merril, C., Wu, A., Olde, B., Moreno, R., Kerlavage, a., McCombie, W. and Venter, J. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656.PubMedCrossRefGoogle Scholar
  2. Bablak, P., Draper, J., Davey, M.R. and Lynch, P.T. (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell, Tiss. Org. Cult. 42, 97–107.CrossRefGoogle Scholar
  3. Bennett, M.D. and Leitch, I.J. (2005) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann. Botany 95, 45–90.CrossRefGoogle Scholar
  4. Bossolini, E., Wicker, T., Knobel, P.A. and Keller, B. (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 49, 704–717.PubMedCrossRefGoogle Scholar
  5. Caldwell, D.G., McCallum, N., Shaw, P., Muehlbauer, G.J., Marshall, D.F. and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 40, 143–150.PubMedCrossRefGoogle Scholar
  6. Carpita, N.C. (1996) Structure and biogenesis of the cell walls of grasses. Ann. Rev. Plant Phys. Plant Mol. Biol. 47, 445–476.CrossRefGoogle Scholar
  7. Catalán, P. and Olmstead, R.G. (2000) Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. Plant Syst. Evol. 220, 1–19.Google Scholar
  8. Catalán, P., Ying, S., Armstrong, L., Draper, J. and Stace, C.A. (1995) Molecular phylogeny of the grass genus Brachypodium P.Beuav. based on RFLP and RAPD analysis. Botanical J. Linn. Soc. 117, 263–280.Google Scholar
  9. Christiansen, P., Didion, T., Andersen, C.H., Folling, M. and Nielsen, K.K. (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep. 23, 751–758.PubMedCrossRefGoogle Scholar
  10. Christou, P., Ford, T.L. and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio. Technol. 9, 957–962.Google Scholar
  11. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J-L., Hückelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.PubMedCrossRefGoogle Scholar
  12. Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R.N. and Fauquet, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7, 25–33.CrossRefGoogle Scholar
  13. DOE. (Ed.). (2006). Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda, U.S. Department of Energy, Office of Science and Office of Energy Efficiency.Google Scholar
  14. Döring, E., Schneider, J., Hilu, K.W. and Röser, M. (2007) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bull. 62, 407–424.Google Scholar
  15. Draper, J., Mur, L.A.J., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R. and Routledge, A.P.M. (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Phys. 127, 1539–1555.CrossRefGoogle Scholar
  16. Edwards, M., Cooper, J., Massalski, P. and Green, B. (1985) Some properties of a virus-like agent found in Brachypodium sylvaticum in the United Kingdom. Plant Pathol. 34, 95–104.CrossRefGoogle Scholar
  17. Feldmann, K.A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.CrossRefGoogle Scholar
  18. Foote, T.N., Griffiths, S., Allouis, S. and Moore, G. (2004) Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct. Integ. Genomics 4, 26–33.CrossRefGoogle Scholar
  19. Fu, X., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P. and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9, 11–19.PubMedCrossRefGoogle Scholar
  20. Garvin, D.F. (2007) Brachypodium: a new monocot model plant system emerges. J. Sci. Food Agric. 87, 1177–1179.CrossRefGoogle Scholar
  21. Gaut, B.S. (2002) Evolutionary dynamics of grass genomes. New Phytol. 154, 15–28.CrossRefGoogle Scholar
  22. Greene, E.A., Codomo, C.A., Taylor, N.E., Henikoff, J.G., Till, B.J., Reynolds, S.H., Enns, L.C., Burtner, C., Johnson, J.E., Odden, A.R., Comai, L. and Henikoff, S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740.PubMedGoogle Scholar
  23. Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.PubMedCrossRefGoogle Scholar
  24. Hasterok, R., Draper, J. and Jenkins, G. (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) beauv. Chromosome Res. 12, 397–403.PubMedCrossRefGoogle Scholar
  25. Hasterok, R., Dulawa, J., Jenkins, G., Leggett, M. and Langdon, T. (2006a) Multi-substrate chromosome preparations for high throughput comparative FISH. BMC Biotechnol. 6, 20.Google Scholar
  26. Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J. and Jenkins, G. (2006b) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173, 349–362.Google Scholar
  27. Hsaio, C., Chatterton, N.J., Asay, K.H. and Jensen, K.B. (1994) Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37, 112–120.CrossRefGoogle Scholar
  28. Huo, N., Gu, Y., Lazo, G., Vogel, J., Coleman-Derr, D., Luo, M., Thilmony, R., Garvin, D. and Anderson, O. (2006) Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 49, 1099–1108.PubMedCrossRefGoogle Scholar
  29. Huo, N., Lazo, G.R., Vogel, J.P., You, F.M., Ma, Y., Hayden, D.M., Coleman-Derr, D., Hill, T.A., Dvorak, J., Anderson, O.D., Luo, M. and Gu, Y.Q. (2007) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct. Integ. Genomics 8, 135–147.Google Scholar
  30. Jeon, J., Lee, S., Jung, K., Jun, S., Jeong, D., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M., Sung, R., Choi, H., Yu, J., Choi, J., Cho, S., Cha, S., Kim, S. and An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.PubMedCrossRefGoogle Scholar
  31. Kellogg, E.A. (1998) Relationships of cereal crops and other grasses. Proc. Natl. Acad. Sci. USA 95, 2005–2010.PubMedCrossRefGoogle Scholar
  32. Kellogg, E.A. (2001) Evolutionary history of the grasses. Plant Phys. 125, 1198–1205.CrossRefGoogle Scholar
  33. Khan, M.A. and Stace, C.A. (1999) Breeding relationships in the genus Brachypodium (Poaceae: Pooideae). Nordic J. Bot. 19, 257–269.CrossRefGoogle Scholar
  34. Kohli, A., Twyman, R.M., Abranches, R., Wegel, E., Stoger, E. and Christou, P. (2003) Transgene integration, organization and interaction in plants. Plant Mol. Biol. 52, 247–258.PubMedCrossRefGoogle Scholar
  35. Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P. and Gatehouse, J.A. (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol. Breed. 9, 231–244.CrossRefGoogle Scholar
  36. Mur, L.A.J., Xu, R., Casson, S.A., Stoddart, W.M., Routledge, A.P.M. and Draper, J. (2004) Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Mol. Plant Pathol. 5, 267–280.PubMedCrossRefGoogle Scholar
  37. Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E. and Werr, W. (2007) WOX gene phylogeny in poaceae: a comparative approach addressing leaf and embryo development. Mol. Biol. Evol. 24, 2474–2484.Google Scholar
  38. Olsen, P., Lenk, I., Jensen, C.S., Petersen, K., Andersen, C.H., Didion, T. and Nielsen, K.K. (2006) Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant Sci. 170, 1020–1025.CrossRefGoogle Scholar
  39. Păcurar, D.I., Thordal-Christensen, H., Nielsen, K.K. and Lenk, I. (2008) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res. 17, 965–975.Google Scholar
  40. Robertson, I.H. (1981) Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica 56, 55–60.CrossRefGoogle Scholar
  41. Rokas, A., Williams, B.I., King, N. and Carroll, S.B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.PubMedCrossRefGoogle Scholar
  42. Routledge, A.P.M., Shelley, G., Smith, J.V., Draper, J., Mur, L.A.J. and Talbot, N.J. (2004) Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol. Plant Pathol. 5, 253–265.PubMedCrossRefGoogle Scholar
  43. Shi, Y., Draper, J. and Stace, C. (1993) Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Syst. Evol. 188, 125–138.Google Scholar
  44. Spielmeyer, W., Singh, R.P., McFadden, H., Wellings, C.R., Huerta-Espino, J., Kong, X., Appels, R. and Lagudah, E.S. (2007) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor. App. Genet. 116, 481–490.Google Scholar
  45. Svitashev, S.K. and Somers, D.A. (2002) Characterization of transgene loci in plants using FISH: a picture is worth a thousand words. Plant Cell Tiss. Org. Cult. 69, 205–214.CrossRefGoogle Scholar
  46. Travella, S., Ross, S.M., Harden, J., Everett, C., Snape, J.W. and Harwood, W.A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23, 780–789.PubMedCrossRefGoogle Scholar
  47. Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) Botany: the pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.PubMedCrossRefGoogle Scholar
  48. Tyagi, A.K. and Mohanty, A. (2000) Rice transformation for crop improvement and functional genomics. Plant Sci. 158, 1–18.PubMedCrossRefGoogle Scholar
  49. Vain, P., Worland, B., Thole, V., McKenzie, N., Alves, S., Opanowicz, M., Fish, L., Bevan, M. and Snape, J. (2008) Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6, 236–245.PubMedCrossRefGoogle Scholar
  50. Vogel, J.P., Garvin, D.F., Leong, O.M. and Hayden, D.M. (2006a) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss. Org. Cult. 85, 199–211.Google Scholar
  51. Vogel, J.P., Gu, Y., Twigg, P., Lazo, G., Laudencia-Chingcuanco, D., Hayden, D., Donze, T., Vivian, L., Stamova, B. and Coleman-Derr, D. (2006b) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113, 186–195.Google Scholar
  52. Vogel, J. and Hill, T. (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27, 471–478.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.USDA-ARS Western Regional Research Center, Genomics and Gene Discovery UnitAlbanyUSA

Personalised recommendations