Genomics of Transposable Elements in the Triticeae

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


Triticeae genomes are structured as blocks of relatively gene-dense “islands” surrounded by long expanses of repetitive DNA. Most of the repetitive DNA is comprised of transposable elements; the greatest bulk of these are the Class I, or retrotransposons, which transpose via an RNA intermediate. The remainder is Class II DNA transposons, which move by a “cut-and-paste” mechanism. The LTR retrotransposons, which is the most abundant group of retrotransposons in the Triticeae genomes, compose 55–70 % of the genome. The precise numbers and insertion sites of members of the various families of transposons and retrotransposons in Triticeae genomes vary, which is a result of continual insertion and loss of individual copies at particular chromosomal locations. Among both the transposons and retrotransposons, non-autonomous forms are quite prevalent, among them the MITEs, SINEs, LARDs, and TRIMs. These require the proteins of autonomous forms for their mobility. Hence, the genome contains a mixture of autonomous elements, some of which contain stop codons or frameshifts inactivating translation, nonautonomous elements, and various deletion derivatives of both. The cell employs many regulatory mechanisms, including transcriptional silencing by DNA methylation and RNAi post-transcriptional silencing, to reduce transposable element propagation. Nevertheless, transposable elements have effects on Triticeae plants and their genomes over various time frames, ranging from read-through modulation of gene expression following stress activation to gene mutagenesis and growth in genome size. Genomic diversification driven by transposable element activity has made possible the exploitation of these elements as molecular markers for the Triticeae, complementing genic markers such as SNPs. With the emergence of genome sequences for members of the Triticeae and for related species such Brachypodium distachyon, a picture of the role of transposable elements in the evolution of genomes in the Triticeae is now emerging.


Transposable Element Miniature Inverted Repeat Transposable Element Short Intersperse Nuclear Element Gypsy Element Triticeae Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, O.D., Larka, L., Christoffers, M.J., McCue, K.F. and Gustafson, J.P. (2002) Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions. Genome 45, 367–380.PubMedCrossRefGoogle Scholar
  2. Baulcombe, D.C. (2006) Short silencing RNA: the dark matter of genetics? Cold Spring Harbor Symp. Quant. Biol. 71, 13–20.Google Scholar
  3. Bäurle, I., Smith, L., Baulcombe, D.C. and Dean, C. (2007) Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318, 109–112.PubMedCrossRefGoogle Scholar
  4. Boyko, E., Kalendar, R., Korzun, V., Gill, B. and Schulman, A.H. (2002) Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol. Biol. 48, 767–790.PubMedCrossRefGoogle Scholar
  5. Capy, P., Langin, T., Higuet, D., Maurer, P. and Bazin, C. (1997) Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? Genetica 100, 63–72.PubMedCrossRefGoogle Scholar
  6. Casa, A.M., Nagel, A. and Wessler, S.R. (2004) MITE display. Methods Mol. Biol. 260, 175–188.PubMedGoogle Scholar
  7. Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., Joudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.PubMedCrossRefGoogle Scholar
  8. Cheng, C., Daigen, M. and Hirochika, H. (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol. Genet. Genomics 276, 378–390.PubMedCrossRefGoogle Scholar
  9. Czyz, A., Stillmock, K.A., Hazuda, D.J. and Reznikoff, W.S. (2007) Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors. Biochemistry 46, 10776–10789.PubMedCrossRefGoogle Scholar
  10. Dewannieux, M., Esnault, C. and Heidmann, T. (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48.PubMedCrossRefGoogle Scholar
  11. Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, R., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D. and Waugh, R. (2006) An atlas of gene expression from seed to seed through barley development. Funct. Integr. Genomics 6, 202–211.PubMedCrossRefGoogle Scholar
  12. Dubcovsky, J., Ramakrishna, W., SanMiguel, P.J., Busso, C.S., Yan, L., Shiloff, B.A. and Bennetzen, J.L. (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 125, 1342–1353.PubMedCrossRefGoogle Scholar
  13. Fantaccione, S., Woodrow, P. and Pontecorvo, G. (2008) Identification of a family of SINEs and LINEs in the Pipistrellus kuhli genome: a new structural and functional symbiotic relationship. Genomics 91, 178–185.PubMedCrossRefGoogle Scholar
  14. Flavell, A.J., Knox, M.R., Pearce, S.R. and Ellis, T.H.N. (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650.PubMedCrossRefGoogle Scholar
  15. Flavell, A.J., Bolshakov, V.N., Booth, A., Jing, R., Russell, J., Ellis, T.H. and Isaac, P. (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucl. Acids Res. 31, e115.PubMedCrossRefGoogle Scholar
  16. Flavell, R.B., Rimpau, J. and Smith, D.B. (1977) Repeated sequence DNA relationships in four cereal genomes. Chromosoma 63, 205–222.CrossRefGoogle Scholar
  17. Flavell, R.B. (1986) Repetitive DNA and chromosome evolution in plants. Phil. Trans. R. Soc. Lond. B 312, 227–242.CrossRefGoogle Scholar
  18. Galliano, H., Muller, A.E., Lucht, J.M. and Meyer, P. (1995) The transformation booster sequence from Petunia hybrida is a retrotransposon derivative that binds to the nuclear scaffold. Mol. Gen. Genet. 247, 614–622.PubMedCrossRefGoogle Scholar
  19. García-Arriaza, J., Ojosnegros, S., Dávila, M., Domingo, E. and Escarmís, C. (2006) Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. J. Mol. Biol. 360, 558–572.PubMedCrossRefGoogle Scholar
  20. Garcia-Perez, J.L., Doucet, A.J., Bucheton, A., Moran, J.V. and Gilbert, N. (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 17, 602–611.PubMedCrossRefGoogle Scholar
  21. Harberd, N.P., Flavell, R.B. and Thompson, R.D. (1987) Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol. Gen. Genet. 209, 326–332.PubMedCrossRefGoogle Scholar
  22. Hickman, A., Perez, Z., Zhou, L., Musingarimi, P., Ghirlando, R., Hinshaw, J., Craig, N. and Dyda, F. (2005) Molecular architecture of a eukaryotic DNA transposase. Nat. Struct. Biol. 12, 715–721.CrossRefGoogle Scholar
  23. Hudakova, S., Michalek, W., Presting, G.G., ten Hoopen, R., dos Santos, K., Jasencakova, Z. and Schubert, I. (2001) Sequence organization of barley centromeres. Nucl. Acids Res. 29, 5029–5035.PubMedCrossRefGoogle Scholar
  24. Huettel, B., Kanno, T., Daxinger, L., Bucher, E., van der Winden, J., Matzke, A.J. and Matzke, M. (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim. Biophys. Acta 1769, 358–374.PubMedGoogle Scholar
  25. Jones-Rhoades, M.W., Bartel, D.P. and Bartel, B. (2006) MicroRNAS and their regulatory roles in plants. Ann. Rev. Plant Physiol. 57, 19–53.Google Scholar
  26. Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 111, 433–444.PubMedCrossRefGoogle Scholar
  27. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A.H. (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.CrossRefGoogle Scholar
  28. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97, 6603–6607.PubMedCrossRefGoogle Scholar
  29. Kalendar, R., Vicient, C.M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A. and Schulman, A.H. (2004) LARD retroelements: novel, non-autonomous components of barley and related genomes. Genetics 166, 1437–1450.PubMedCrossRefGoogle Scholar
  30. Kalendar, R. and Schulman, A. (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat. Protoc. 1, 2478–2484.PubMedCrossRefGoogle Scholar
  31. Kapitonov, V.V. and Jurka, J. (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet. 23, 521–529.PubMedCrossRefGoogle Scholar
  32. Kashkush, K., Feldman, M. and Levy, A.A. (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 32, 102–106.CrossRefGoogle Scholar
  33. Kikuchi, K., Terauchi, K., Wada, M. and Hirano, H.Y. (2003) The plant MITE mPing is mobilized in anther culture. Nature 421, 167–170.PubMedCrossRefGoogle Scholar
  34. Kobayashi, S., Goto-Yamamoto, N. and Hirochika, H. (2004) Retrotransposon-induced mutations in grape skin color. Science 304, 982.PubMedCrossRefGoogle Scholar
  35. Kronmiller, B.A. and Wise, R.P. (2007) TE nest: automated chronological annotation and visualization of nested plant transposable elements. Plant Physiol. 146, 45–59.PubMedCrossRefGoogle Scholar
  36. Lai, J., Li, Y., Messing, J. and Dooner, H.K. (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc. Natl. Acad. Sci. USA 102, 9068–9073.PubMedCrossRefGoogle Scholar
  37. Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P. and Schulman, A.H. (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol. Genet. Genomics 269, 464–474.PubMedCrossRefGoogle Scholar
  38. Li, T. and Pattnaik, A.K. (1997) Replication signals in the genome of vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology 232, 248–259.PubMedCrossRefGoogle Scholar
  39. Li, W., Zhang, P., Fellers, J.P., Friebe, B. and Gill, B.S. (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40, 500–511.PubMedCrossRefGoogle Scholar
  40. Lippman, Z., May, B., Yordan, C., Singer, T. and Martienssen, R. (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, E67.PubMedCrossRefGoogle Scholar
  41. Manninen, O., Kalendar, R., Robinson, J. and Schulman, A.H. (2000) Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol. Gen. Genet. 264, 325–334.PubMedCrossRefGoogle Scholar
  42. Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A. and Rafalski, A. (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37, 997–1002.PubMedCrossRefGoogle Scholar
  43. Muñiz, L.M., Cuadrado, A., Jouve, N. and Gonzales, J.M. (2001) The detection, cloning, and characterisation of WIS 2-1A retrotransposon-like sequences in Triticum aestivum and xTriticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44, 978–989.Google Scholar
  44. Nabirochkin, S., Ossokinam, M. and Heidmann, T. (1998) A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. J. Biol. Chem. 273, 2473–2479.PubMedCrossRefGoogle Scholar
  45. Nagy, E.D. and Lelley, T. (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor. Appl. Genet. 107, 1271–1277.PubMedCrossRefGoogle Scholar
  46. Nagy, E.D., Molnar, I., Schneider, A., Kovacs, G. and Molnar-Lang, M. (2006) Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49, 289–296.PubMedCrossRefGoogle Scholar
  47. Neumann, P., Yan, H. and Jiang, J. (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176, 749–761.PubMedCrossRefGoogle Scholar
  48. Ohdan, T., Francisco, P.B., Jr., Sawada, T., Hirose, T., Terao, T., Satoh, H. and Nakamura, Y. (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56, 3229–3244.PubMedCrossRefGoogle Scholar
  49. Panstruga, R., Büschges, R., Piffanelli, P. and Schulze-Lefert, P. (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucl. Acids Res. 26, 1056–1062.PubMedCrossRefGoogle Scholar
  50. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.PubMedCrossRefGoogle Scholar
  51. Pearce, S.R., Harrison, G., Heslop-Harrison, J.S., Flavell, A.J. and Kumar, A. (1997) Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40, 1–9.CrossRefGoogle Scholar
  52. Penterman, J., Uzawa, R. and Fischer, R.L. (2007) Genetic Interactions between DNA demethylation and methylation in Arabidopsis thaliana. Plant Physiol. 145, 1549–1557.PubMedCrossRefGoogle Scholar
  53. Piegu, B., Guyot, R., Picault, N., Roulin, A., Saniyal, A., Kim, H.I., Collura, K., Brar, D.S., Jackson, S.A., Wing, R.A. and Panaud, O. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262–1269.PubMedCrossRefGoogle Scholar
  54. Qiu, W., Park, J.W., Jackson, A.O. and Scholthof, H.B. (2001) Retention of a small replicase gene segment in tomato bushy stunt virus defective RNAs inhibits their helper-mediated trans-accumulation. Virology 281, 51–60.PubMedCrossRefGoogle Scholar
  55. Queen, R.A., Gribbon, B.M., James, C., Jack, P. and Flavell, A.J. (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol. Gen. Genomics 271, 91–97.CrossRefGoogle Scholar
  56. Rabinowicz, P.D. (2000) Are obese plant genomes on a diet? Genome Res. 10, 893–894.PubMedCrossRefGoogle Scholar
  57. Ranjekar, P.K., Pallotta, D. and Lafontaine, J.G. (1976) Analysis of the genome of plants. II. Characterization of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aestivum). Biochim. Biophys. Acta 425, 30–40.PubMedGoogle Scholar
  58. Rice, P.A. and Baker, T.A. (2001) Comparative architecture of transposase and integrase complexes. Nat. Struct. Biol. 8, 302–307.CrossRefGoogle Scholar
  59. Ronemus, M., Vaughn, M.W. and Martienssen, R.A. (2006) MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18, 1559–1574.PubMedCrossRefGoogle Scholar
  60. Rostocks, N., Park, Y.J., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B.A., SanMiguel, P.J., Jiang, Z., Brueggeman, R., Sandhu, D., Gill, K., Bennetzen, J.L. and Kleinhofs, A. (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2, 51–59.CrossRefGoogle Scholar
  61. Roux, L., Simon, A.E. and Holland, J.J. (1991) Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40, 181–211.PubMedCrossRefGoogle Scholar
  62. Rudenko, G.N., Ono, A. and Walbot, V. (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J. 33, 1013–1025.PubMedCrossRefGoogle Scholar
  63. Sabot, F., Guyot, R., Wicker, T., Chantret, N., Laubin, B., Chalhoub, B., Leroy, P., Sourdille, P. and Bernard, M. (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol. Gen. Genomics 274, 119–130.CrossRefGoogle Scholar
  64. Sabot, F. and Schulman, A.H. (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97, 381–388.PubMedCrossRefGoogle Scholar
  65. Sabot, F., Sourdille, P., Chantret, N. and Bernard, M. (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128, 439–447.PubMedCrossRefGoogle Scholar
  66. Saintenac, C., Falque, M., Martin, O.C., Paux, E., Feuillet, C. and Sourdille, P. (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181, 393–403.Google Scholar
  67. SanMiguel, P., Gaut, B.S., Tikhoniv, A., Nakajima, Y. and Bennetzen, J.L. (1998) The paleontology of intergene retrotransposons in maize. Nat. Genet. 20, 43–45.PubMedCrossRefGoogle Scholar
  68. Schulman, A.H., Flavell, A.J. and Ellis, T.H.N. (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol. Biol. 260, 145–173.PubMedGoogle Scholar
  69. Schulman, A.H. (2007) Molecular markers to assess genetic diversity. Euphytica 158, 313–321.CrossRefGoogle Scholar
  70. Shirasu, K., Schulman, A.H., Lahaye, T. and Schulze-Lefert, P. (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915.PubMedCrossRefGoogle Scholar
  71. Soleimani, V.D., Baum, B.R. and Johnson, D.A. (2005) Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism. Theor. Appl. Genet. 110, 1290–1300.PubMedCrossRefGoogle Scholar
  72. Suoniemi, A., Anamthawat-Jónsson, K., Arna, T. and Schulman, A.H. (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321–1329.PubMedCrossRefGoogle Scholar
  73. Tanskanen, J.A., Sabot, F., Vicient, C. and Schulman, A.H. (2007) Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390, 166–174.PubMedCrossRefGoogle Scholar
  74. This, P., Lacombe, T., Cadle-Davidson, M. and Owens, C.L. (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor. Appl. Genet. 114, 723–730.PubMedCrossRefGoogle Scholar
  75. Tran, R.K., Zilberman, D., de Bustos, C., Ditt, R.F., Henikoff, J.G., Lindroth, A.M., Delrow, J., Boyle, T., Kwong, S., Bryson, T.D., Jacobsen, S.E. and Henikoff, S. (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol. 6, R90.PubMedCrossRefGoogle Scholar
  76. Van den Broeck, D., Maes, T., Sauer, M., Zethof, J., De Keukeleire, P., D’Hauw, M., Van Montagu, M. and Gerats, T. (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J. 13, 121–129.PubMedGoogle Scholar
  77. Vicient, C.M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E. and Schulman, A.H. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784.PubMedCrossRefGoogle Scholar
  78. Vitte, C. and Panaud, O. (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20, 528–540.PubMedCrossRefGoogle Scholar
  79. Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, W.T.B. and Powell, W. (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687–694.PubMedCrossRefGoogle Scholar
  80. Wei, F., Wing, R.A. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14, 1903–1917.PubMedCrossRefGoogle Scholar
  81. Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.PubMedCrossRefGoogle Scholar
  82. Wicker, T., Guyot, R., Yahiaoui, N. and Keller, B. (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 132, 52–63.PubMedCrossRefGoogle Scholar
  83. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A.J., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P. and Schulman, A.H. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982.PubMedCrossRefGoogle Scholar
  84. Witte, C.P., Le, Q.H., Bureau, T. and Kumar, A. (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc. Natl. Acad. Sci. USA 98, 13778–13783.PubMedCrossRefGoogle Scholar
  85. Woodhouse, M.R., Freeling, M. and Lisch, D. (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 4, e339.PubMedCrossRefGoogle Scholar
  86. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E. and Ecker, J.R. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 22, 1189–1201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of HelsinkiFinland
  2. 2.MTT Agrifood Research, Biotechnology and Food Research, Plant GenomicsFinland

Personalised recommendations