Skip to main content

Functional Validation in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

The need to discover and confirm gene function directly in both wheat and barley is growing in importance. In this chapter we outline three of the most common approaches – TILLING, ‘transient’ and ‘stable’ transformation – that are being adopted by Triticeae researchers to meet this objective. As these approaches have different outcomes, they are therefore applicable to different situations depending upon the research questions being addressed. Here, we summarise recent developments in each of these functional validation strategies, and where possible use examples to illustrate the power of each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlquist, P., Dasgupta, R. and Kaesberg, P. (1984) Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication. J. Mol. Biol. 172, 369–383.

    PubMed  CAS  Google Scholar 

  • Altpeter, F., Vasil, V., Srivastava, V. and Vasil, I. K. (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat. Biotech. 14, 1155–1159.

    PubMed  CAS  Google Scholar 

  • Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., Dudler, R. and Schweizer, P. (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol. Biol. 57, 271–283.

    PubMed  CAS  Google Scholar 

  • Alvarez, M. L., Guelman, S., Halford, N. G., Lustig, S., Reggiardo, M. I., Rybabushkina, N., Shewry, P. R., Stein, J. and Vallejos, R. H. (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100, 319–327.

    CAS  Google Scholar 

  • Ashburner, M. (1990) Drosophila: A Laboratory Handbook. Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Ayliffe, M. A., Pallota, M., Langridge, P. and Pryor, A. J. (2007) A barley activation tagging system. Plant Mol. Biol. 64, 329–347.

    PubMed  CAS  Google Scholar 

  • Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.

    PubMed  CAS  Google Scholar 

  • Barcelo, P., Hagel, C., Becker, D., Martin, A. and Lorz, H. (1994) Transgenic cereal (Tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. The Plant J. 5, 583–592.

    CAS  Google Scholar 

  • Barro, F., Rooke, L., Békés, F., Gras, P., Tatham, A. S., Fido, R. J., Lazzeri, P., Shewry, P. R. and Barcelo, P. (1997) Transformation of wheat with HMW subunit genes results in improved functional properties. Nat. Biotech. 15, 1295–1299.

    PubMed  CAS  Google Scholar 

  • Beecher, B., Bettge, A., Smidansky, E. and Giroux, M. J. (2002) Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theor. Appl. Genet. 105, 870–877.

    PubMed  CAS  Google Scholar 

  • Bieri, S., Potrykus, I. and Futterer, J. (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor. Appl. Genet. 100, 755–763.

    CAS  Google Scholar 

  • Bieri, S., Mauch, S., Shen, Q. H., Peart, H., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiß, H. H., Shirasu, K. and Schulze-Lefert, P. (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. The Plant Cell 16, 3480–3495.

    PubMed  CAS  Google Scholar 

  • Blechl, A. E. and Anderson, O. D. (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat. Biotech. 14, 875–897.

    PubMed  CAS  Google Scholar 

  • Bliffeld, M., Mundy, J., Potrykus, I. and Futterer, J. (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98, 1079–1086.

    CAS  Google Scholar 

  • Bommineni, V. R., Jauhar, P. P. and Peterson, T. S. (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J. Hered. 88, 475–481.

    Google Scholar 

  • Brigneti, G., Martin-Herna´ndez, A. M., Jin, H., Chen, J., Baulcombe, D. C., Baker, B. and Jones, J. D. G. (2004) Virus-induced gene silencing in Solanum species. The Plant J. 39, 264–272.

    CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffensen, B. and Kleinhofs, A. (2002) The barley stem rust resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    PubMed  CAS  Google Scholar 

  • Bruun-Rasmussen, M., Madsen, C. T., Jessing, S. and Albrechtsen, M. (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol. Plant-Microbe Interact. 20, 1323–1331.

    PubMed  CAS  Google Scholar 

  • Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. (1997) The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 88, 695–705.

    PubMed  Google Scholar 

  • Caldwell, D. G., McCallum, N., Shaw, P., Muehlbauer, G. J., Marshall, D. F. and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). The Plant J. 40, 143–150.

    CAS  Google Scholar 

  • Castillo, A., Vasil, V. and Vasil, I. K. (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technol. 12, 1366–1371.

    CAS  Google Scholar 

  • Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C., Duncan, D. R., Conner, T. W. and Wan, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980.

    PubMed  CAS  Google Scholar 

  • Cho, M. J., Choi, H. W., Buchanan, B. B. and Lemaux, P. G. (1999) Inheritance of tissue specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor. Appl. Genet. 98, 1253–1262.

    CAS  Google Scholar 

  • Cho, M. J., Choi, H. W., Jiang, W., Ha, C. D. and Lemaux, P. G. (2002) Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. Physiol. Plantarum 115, 144–151.

    CAS  Google Scholar 

  • Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promoter-based vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Trans. Res. 5, 213–218.

    CAS  Google Scholar 

  • Curtis, M. D. and Grossniklaus, U. (2003) A GATEWAY cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469.

    PubMed  CAS  Google Scholar 

  • Dagle, J. M., Weeks, D. L. and Walder, J. A. (1991) Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res. Dev. 1, 11–20.

    PubMed  CAS  Google Scholar 

  • Dalmais, M., Schmidt, J., Le Signor, C., Moussy, F., Burstin, J., Savois, V., Aubert, G., Brunaud, V., de Oliveira, Y., Guichard, C., Thompson, R. and Bendahmane, A. (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 9, R43.

    PubMed  Google Scholar 

  • De Jong, W. and Ahlquist, P. (1995) Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J. Virol. 69, 1485–1492.

    PubMed  Google Scholar 

  • Dias, N. and Stein, C. A. (2002) Antisense Oligonucleotides: Basic Concepts and Mechanisms. Mol. Cancer Ther. 1, 347–355.

    PubMed  CAS  Google Scholar 

  • Ding, X. S., Schneider, W. L., Chaluvadi, S. R., Mian, M. A. R. and Nelson, R. S. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol. Plant-Microbe Interact. 19, 1229–1239.

    PubMed  CAS  Google Scholar 

  • Ding, Y. and Lawrence, C. E. (2001) Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res. 29, 1034–1046.

    PubMed  CAS  Google Scholar 

  • Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant-Microbe Interact. 18, 755–761.

    PubMed  CAS  Google Scholar 

  • Edwards, M. C. (1995) Mapping of the seed transmission determinants of barley stripe mosaic virus. Mol. Plant-Microbe Interact. 8, 906–915.

    PubMed  CAS  Google Scholar 

  • Fang, Y. D., Akula, C. and Altpeter, F. (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA:genomic DNA junctions. J. Plant Physiol. 159, 1131–1138.

    CAS  Google Scholar 

  • French, R., Janda, M. and Ahlquist, P. (1986) Bacterial gene inserted in an engineered RNA virus: efficient expression in monocotyledonous plant cells. Science 231, 1294–1297.

    PubMed  CAS  Google Scholar 

  • Furtado, A., Henry, R., Scott, K. and Meech, S. (2003) The promoter of the asi gene directs expression in the maternal tissues of the seed in transgenic barley. Plant Mol. Biol. 52, 787–799.

    PubMed  CAS  Google Scholar 

  • Furtado, A. and Henry, R. J. (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotech. J. 3, 421–434.

    CAS  Google Scholar 

  • Goodchild, J. (2004) Oligonucleotide therapeutics: 25 years agrowing. Curr. Opin. Mol. Ther. 6, 120–128.

    PubMed  CAS  Google Scholar 

  • Greene, E. A., Codomo, C. A., Taylor, N. E., Henikoff, J. G., Till, B. J., Reynolds, S. H., Enns, L. C., Burtner, C., Johnson, J. E., Odden, A. R., Comai, L. and Henikoff, S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740.

    PubMed  CAS  Google Scholar 

  • Halterman, D., Zhou, F., Wei, F., Wise, R. P. and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. The Plant J. 25, 335–348.

    CAS  Google Scholar 

  • Haupt, S., Duncan, G. H., Holzberg, S. and Oparka, K. J. (2001) Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol. 125, 209–218.

    PubMed  CAS  Google Scholar 

  • Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I. E., Sundar, S., Jarmolowski, A., Shirasu, K. and Lacomme, C. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol. 138, 2155–2164.

    PubMed  CAS  Google Scholar 

  • Hema, M. and Kao, C. C. (2004) Template sequence near the initiation nucleotide can modulate brome mosaic virus RNA accumulation in plant protoplasts. J. Virol. 78, 1169–1180.

    PubMed  CAS  Google Scholar 

  • Hensel, G., Valkov, V., Middlefell-Williams, J. and Kumlehn, J. (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J. Plant Physiol. 165, 71–82.

    PubMed  CAS  Google Scholar 

  • Himmelbach, A., Zierold, U., Hensel, G., Riechen, J., Douchkov, D., Schweizer, P. and Kumlehn, J. (2007) A set of modular binary vectors for the transformation of cereals. Plant Physiol. 145, 1192–1200.

    PubMed  CAS  Google Scholar 

  • Hodgdon, A. L., Marcus, A. H., Arenaz, P., Rosichan, J. L., Bogyo, T. P. and Nilan, R. A. (1981) Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations. Environ. Health Perspect. 37, 5–7.

    PubMed  CAS  Google Scholar 

  • Holme, I. B., Brinch-Pedersen, H., Lange, M. and Holm, P. B. (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep. 25, 1325–1335.

    PubMed  CAS  Google Scholar 

  • Holzberg, S., Brosio, P., Gross, C. and Pogue, G. P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant J. 30, 315–327.

    CAS  Google Scholar 

  • Horvath, H., Rostoks, N., Brueggeman, R., Steffensen, B., von Wettstein, D. and Kleinhofs, A. (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc. Natl. Acad. Sci. USA 100, 364–369.

    PubMed  CAS  Google Scholar 

  • Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. and Fry, J. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 21, 1010–1019.

    PubMed  CAS  Google Scholar 

  • Ihlow, A., Schweizer, P. and Seiffert, U. (2008) A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs. BMC Plant Biol. 8, 6.

    PubMed  Google Scholar 

  • Jackson, S. A., Zhang, P., Chen, W. P., Phillips, R. L., Friebe, B., Muthukrishnan, S. and Gill, B. S. (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor. Appl. Genet. 103, 56–62.

    CAS  Google Scholar 

  • Jaehne, A., Becker, D., Brettschneider, H. and Loerz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89, 525–533.

    Google Scholar 

  • Johansen, E., Edwards, M. C. and Hampton, R. O. (1994) Seed transmission of viruses: current perspectives. Annu. Rev. Phytopathol. 32, 363–386.

    Google Scholar 

  • Johnson, J. A., Bragg, J. N., Lawrence, D. M. and Jackson, A. O. (2003) Sequence elements controlling expression of Barley stripe mosaic virus subgenomic RNAs in vivo. Virology 313, 66–80.

    PubMed  CAS  Google Scholar 

  • Kanyuka, K., Druka, A., Caldwell, D. G., Tymon, A., McCallum, N., Waugh, R. and Adams, M. J. (2005). Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol. Plant Path. 6, 449–458.

    CAS  Google Scholar 

  • Kluth, A., Sprunck, S., Becker, D., Loerz, H. and Luetticke, S. (2002) 5′ deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities. Plant Mol. Biol. 49, 669–682.

    PubMed  CAS  Google Scholar 

  • Koprek, T., McElroy, D., Louwerse, J., Williams-Carrier, R. and Lemaux, P. G. (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. The Plant J. 24, 253–264.

    CAS  Google Scholar 

  • Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D. and Loerz, H. (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotech. J. 4, 251–261.

    CAS  Google Scholar 

  • Lacomme, C., Hrubikova, K. and Hein, I. (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. The Plant J. 34, 543–553.

    CAS  Google Scholar 

  • Lamacchia, C., Shewry, P. R., Di Fonzo, N., Forsyth, J. L., Harris, N., Lazzeri, P. A., Napier, J. A., Halford, N. G. and Barcelo, P. (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J. Exp. Bot. 52, 243–250.

    PubMed  CAS  Google Scholar 

  • Li, S. L. and Redei, G. P. (1969) Estimation of mutation rate in autogamous diploids. Radiation Botany 9, 125–131.

    Google Scholar 

  • Li, J. R., Zhao, W., Li, Q. Z., Ye, X. G., An, B. Q., Li, X. and Zhang, X. S. (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genet. Sin. 32, 846–854.

    PubMed  CAS  Google Scholar 

  • Loukoianov, A., Yan, L., Blechl, A., Sanchez, A. and Dubcovsky, J. (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 138, 2364–2373.

    PubMed  CAS  Google Scholar 

  • Marwick, C. (1998) First “antisense” drug will treat CMV retinitis. J. Am. Med. Assoc. 280, 871.

    CAS  Google Scholar 

  • Matthes, M., Singh, R., Cheah, S. C. and Karp, A. (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor. Appl. Genet. 102, 971–979.

    CAS  Google Scholar 

  • Matthews, P. R., Wang, M. B., Waterhouse, P. M., Thornton, S., Fieg, S. J., Gubler, F. and Jacobsen, J. V. (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol. Breed. 7, 195–202.

    CAS  Google Scholar 

  • McCallum, C. M., Comai, L., Greene, E. A. and Henikoff, S. (2000a) Targeted screening for induced mutations. Nat. Biotech. 18, 455–457.

    Google Scholar 

  • McCallum, C. M., Comai, L., Greene, E. A. and Henikoff, S. (2000b) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442.

    Google Scholar 

  • McElroy, D., Zhang, W. G., Cao, J. and Wu, R. (1990) Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell 2, 163–171.

    PubMed  CAS  Google Scholar 

  • McKinney, H. H. and Greeley, L. W. (1965) Biological characteristics of barley stripe mosaic virus strains and their evolution. USDA Tech. Bull. 1324.

    Google Scholar 

  • Moissiard, G. and Voinnet, O. (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc. Natl. Acad. Sci. USA 103, 19593–19598.

    PubMed  CAS  Google Scholar 

  • Moutinho, A., Camacho, L., Haley, A., Pais, M. S., Trewavas, A. and Malho, R. (2001) Antisense perturbation of protein function in living pollen tubes. Sex. Plant Reprod. 14, 101–104.

    CAS  Google Scholar 

  • Murray, F., Brettell, R., Matthews, P., Bishop, D. and Jacobsen, J. (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep. 22, 397–402.

    PubMed  CAS  Google Scholar 

  • Murray, F., Matthews, P., Jacobsen, J. and Gubler, F. (2006) Increased expression of HvGAMYB in transgenic barley increases hydrolytic enzyme production by aleurone cells in response to gibberellin. J. Cereal Sci. 44, 317–322.

    CAS  Google Scholar 

  • Nielsen, K., Olsen, O. and Oliver, R. (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol. Mol. Plant Pathol. 54, 1–12.

    CAS  Google Scholar 

  • Ng, P. C. and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814.

    PubMed  CAS  Google Scholar 

  • Oikawa, A., Rahman, A., Yamashita, T., Taira, H. and Kidou, S. I. (2007) Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. J. Exp. Bot. 58, 2617–2625.

    PubMed  CAS  Google Scholar 

  • Patel, M., Johnson, J. S., Brettell, R. I. S., Jacobsen, J. and Xue, G. P. (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol. Breed. 6, 113–123.

    CAS  Google Scholar 

  • Perry, J. A., Wang, T. L., Welham, T. J., Gardner, S., Pike, J. M., Yoshida, S. and Parniske, M. (2004) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871.

    Google Scholar 

  • Popelka, J. C. and Altpeter, F. (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breed. 11, 203–211.

    CAS  Google Scholar 

  • Popelka, J. C., Xu, J. and Altpeter, F. (2003) Generation of rye plants with low copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res. 12, 587–596.

    PubMed  CAS  Google Scholar 

  • Qui, P., Shandilya, H., D’Alessio, J. M., O’Connor, K., Durocher, J. and Gerard, G. F. (2004) Mutation detection using Surveyor nuclease. Biotechniques 36, 702.

    Google Scholar 

  • Radchuk, V., Borisjuk, L., Radchuk, R., Steinbiss, H. H., Rolletschek, H., Broeders, S. and Wobus, U. (2006) Jekyll encodes a novel protein involved in the sexual reproduction of barley. The Plant Cell 18, 1652–1666.

    PubMed  CAS  Google Scholar 

  • Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P. and Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. Exp. Bot. 52, 865–874.

    PubMed  CAS  Google Scholar 

  • Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S. and Morell, M. (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 103, 3546–3551.

    PubMed  CAS  Google Scholar 

  • Ruiz, M. T., Voinnet, O. and Baulcombe, D. C. (1998) Initiation and maintenance of virus-induced gene silencing. The Plant Cell 10, 937–946.

    PubMed  CAS  Google Scholar 

  • Salvo-Garrido, H., Travella, S., Bilham, L. J., Harwood, W. A. and Snape, J. W. (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167, 1371–1379.

    Google Scholar 

  • Schultheiss, H., Hensel, G., Imani, J., Broeders, S., Sonnewald, U., Kogel, K. H., Kumlehn, J. and Hueckelhoven, R. (2005) Ectopic expression of constitutively activated RACB small GTPase in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 139, 353–362.

    PubMed  CAS  Google Scholar 

  • Schweizer, P., Pokorny, J., Schulze-Lefert, P. and Dudler, R. (2000) Technical advance. Double-stranded RNA interferes with gene function at the single-cell level in cereals. The Plant J. 24, 895–903.

    CAS  Google Scholar 

  • Scofield, S. R., Huang, L., Brandt, A. S. and Gill, B. S. (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.

    PubMed  CAS  Google Scholar 

  • Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R. and Schulze-Lefert, P. (1999) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. The Plant J. 17, 293–299.

    CAS  Google Scholar 

  • Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z., Tai, Y., Gill, B. K. and Faris, J. D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    PubMed  CAS  Google Scholar 

  • Singh, J., Zhang, S., Chen, C., Cooper, L., Bregitzer, P., Sturbaum, A., Hayes, P. M. and Lemaux, P. G. (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol. Biol. 62, 937–950.

    PubMed  CAS  Google Scholar 

  • Skadsen, R. W., Sathish, P., Federico, M. L., Abebe, T., Fu, J. and Kaeppler, H. F. (2002) Cloning of the promotor for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea. Plant Mol. Biol. 49, 545–555.

    PubMed  CAS  Google Scholar 

  • Slade, A. J., Fuerstenberg, S. I., Loeffler, D., Steine, M. N. and Facciotti, D. (2005) A reverse genetic, non-transgenic approach to wheat crop improvement by TILLING. Nature Biotechnology 23, 75–81.

    PubMed  CAS  Google Scholar 

  • Stadler, L. J. (1928a) Mutations in barley induced by x-rays and radium. Science 68, 186–197.

    Google Scholar 

  • Stadler, L. J. (1928b) Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci. USA 14, 69–75.

    Google Scholar 

  • Stahl, R., Horvath, H., Van Fleet, J., Voetz, M., von Wettstein, D. and Wolf, N. (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. USA 99, 2146–2151.

    PubMed  CAS  Google Scholar 

  • Stein, N., Perovic, D., Kumlehn, J., Pellic, B., Stracke, S., Streng, S., Ordon, F. and Graner, A. (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive bymovirus resistance in Hordeum vulgare L. The Plant J. 42, 912–922.

    CAS  Google Scholar 

  • Stoeger, E., Williams, S., Keen, D. and Christou, P. (1999) Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Trans. Res. 8, 73–82.

    Google Scholar 

  • Sun, C., Hoglund, A. S., Olsson, H., Mangelsen, E. and Jansson, C. (2005) Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. The Plant J. 44, 128–138.

    CAS  Google Scholar 

  • Sun, C., Ridderstrale, K., Hoglund, A. S., Larsson, L. G. and Jansson, C. (2007) Sweet delivery – sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells. The Plant J. 52, 1192–1198.

    CAS  Google Scholar 

  • Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., Nagato, Y. and Kurata, N. (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol. Genet. Genomics 279, 213–223.

    PubMed  CAS  Google Scholar 

  • Talamè, V., Bovina, R., Sanguineti, M. C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477–485.

    PubMed  CAS  Google Scholar 

  • Taylor, N. E. and Greene, E. A. (2003) PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res. 31, 3808–3811.

    PubMed  CAS  Google Scholar 

  • Thorneycroft, D., Hosein, F., Thangavelu, M., Clark, J., Vizir, I., Burrell, M. M. and Ainsworth, C. (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADP glucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol. J. 1, 259–270.

    PubMed  CAS  Google Scholar 

  • Tilahun, A., Skadsen, R., Patel, M. and Kaeppler, H. (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants. Plant Biotechnol. J. 4, 35–44.

    Google Scholar 

  • Till, B. J., Reynolds, S. H., Weil, C., Springer, N., Burtner, C., Young, K., Bowers, E., Codomo, C. A., Enns, L. C., Odden, A. R., Greene, E. A., Comai, L. and Henikoff, S. (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 4, 12.

    PubMed  Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation. The Plant J. 11, 1369–1376.

    CAS  Google Scholar 

  • Tomita, N., Ogihara, T. and Morishita, R. (2003) Transcription factors as molecular targets: molecular mechanisms of decoy ODN and their design. Curr. Drug Targets 4, 603–608.

    PubMed  CAS  Google Scholar 

  • Travella, S., Klimm, T. E. and Keller, B. (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 142, 6–20.

    PubMed  CAS  Google Scholar 

  • Tsutsumi, N., Kanayama, K. and Tano, S. (1992) Suppression of α-amylase gene expression by antisense oligodeoxynucleotide in barley cultured aleurone layers. Jpn. J. Genet. 67, 147–154.

    PubMed  CAS  Google Scholar 

  • Vasil, V., Castillo, A. M., Fromm, M. E. and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10, 667–674.

    CAS  Google Scholar 

  • Veena, J. H., Doerge, R. W. and Gelvin, S. (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. The Plant J. 35, 219–236.

    CAS  Google Scholar 

  • Vickers, C. E., Xue, G. and Gresshoff, P. M. (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol. Biol. 62, 195–214.

    PubMed  CAS  Google Scholar 

  • Wahlestedt, C., Salmi, P., Good, L., Kela, J., Johnsson, T., Hokfelt, T., Broberger, C., Porreca, F., Lai, J., Ren, K., Ossipov, M., Koshkin, A., Jakobsen, N., Skouv, J., Oerum, H., Jacobsen, M. H. and Wengel, J. (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl. Acad. Sci. USA 97, 5633–5638.

    PubMed  CAS  Google Scholar 

  • Wan, Y. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104, 37–48.

    PubMed  CAS  Google Scholar 

  • Wang, M. B., Abbott, D. C., Upadhyaya, N. M., Jacobsen, J. V. and Waterhouse, P. M. (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aus. J. Plant Physiol. 28, 149–156.

    Google Scholar 

  • Waugh, R., Leader, D. J., McCallum, N. and Caldwell, D. (2006) Harvesting the potential of induced biological diversity. Trends Plant Sci. 11, 71–79.

    PubMed  CAS  Google Scholar 

  • Weeks, J. T., Anderson, O. D. and Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102, 1077–1084.

    PubMed  CAS  Google Scholar 

  • Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G. and Waterhouse, P. M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant J. 27, 581–590.

    CAS  Google Scholar 

  • Wiley, P. R., Tosi, P., Evrard, A., Lovegrove, A., Jones, H. D. and Shewry, P. R. (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol. Biol. 64, 125–136.

    PubMed  CAS  Google Scholar 

  • Wu, H., McCormac, A. C., Elliott, M. C. and Chen, D. F. (1998) Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare L.). Plant Cell Tissue Organ Cult. 54, 161–171.

    CAS  Google Scholar 

  • Wu, H., Sparks, C., Amoah, B. and Jones, H. D. (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 21, 659–668.

    PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J. L., Echenique, V. and Dubcovsky, J. (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    PubMed  CAS  Google Scholar 

  • Yang, B., Wen, X., Kodali, N. S., Oleykowski, C. A., Miller, C. G., Kulinski, J., Besack, D., Yeung, J. A., Kowalski, D. and Yeung, A. T. (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39, 3533–3541.

    PubMed  CAS  Google Scholar 

  • Yao, Q., Cong, L., Chang, J. L., Li, K. X., Yang G. X. and He, G. Y. (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J. Exp. Bot. 57, 3737–3746.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P. and Lemaux, P. G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep. 18, 959–966.

    CAS  Google Scholar 

  • Zimny, J., Becker, D., Brettschneider, R. and Lorz, H. (1995) Fertile, transgenic Triticale (X Triticosecale Wittmack). Mol. Breed. 1, 155–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Hein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hein, I., Kumlehn, J., Waugh, R. (2009). Functional Validation in the Triticeae . In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_13

Download citation

Publish with us

Policies and ethics