Map-Based Cloning of Genes in Triticeae (Wheat and Barley)

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


In the Triticeae crops wheat and barley, only genetic information is available for many genes underlying agronomically important traits, as well as for natural or induced mutants. Therefore, map-based (positional) cloning is the most promising approach for the molecular isolation of genes causing these traits or mutant phenotypes. A growing number of genes (currently 19) have been isolated from wheat and barley based on genetic information only, and a lot has been learnt on the most suitable approaches for such challenging projects in the large and complex genomes of Triticeae. With the ongoing or starting projects on the generation of high-resolution physical maps in barley and wheat, map-based cloning will become simpler and faster in the near future. In order to fully exploit these new resources, there is an increasing need for high-resolution mapping populations. In addition, new and efficient tools have to be developed for the validation of the candidate genes identified in positional cloning. Here, we review the state of the art of positional gene cloning in the Triticeae crops and discuss the challenges in this field of research in the next years.


Bacterial Artificial Chromosome Powdery Mildew Bacterial Artificial Chromosome Clone Bacterial Artificial Chromosome Library Yeast Artificial Chromosome 


  1. Bossolini, E., Wicker, T., Knobel, P.A. and Keller, B. (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 49, 704–717.PubMedCrossRefGoogle Scholar
  2. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs, A. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.PubMedCrossRefGoogle Scholar
  3. Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705.PubMedCrossRefGoogle Scholar
  4. Cloutier, S., McCallum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B. and Jordan, M.C. (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65, 93–106.PubMedCrossRefGoogle Scholar
  5. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.PubMedCrossRefGoogle Scholar
  6. Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Int. 8, 755–761.CrossRefGoogle Scholar
  7. Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.Google Scholar
  8. Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.PubMedGoogle Scholar
  9. Falconer, D.S. and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics. Longman, Essex, England.Google Scholar
  10. Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.PubMedGoogle Scholar
  11. Faris, J.D., Zhang, Z., Fellers, J.P. and Gill, B.S. (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct. Integr. Genomics [Epub ahead of print].Google Scholar
  12. Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. and Keller, B. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.PubMedCrossRefGoogle Scholar
  13. Gale, M.D. and Devos, K.M. (1998) Plant comparative genetics after 10 years. Science 282, 656–659.PubMedCrossRefGoogle Scholar
  14. Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G. (1991) Construction of an RFLP map of barley. Theor. Appl. Genet. 83, 250–256.CrossRefGoogle Scholar
  15. Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.PubMedCrossRefGoogle Scholar
  16. Guyot, R., Yahiaoui, N., Feuillet, C. and Keller, B. (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct. Integr. Genomics 4, 47–58.PubMedCrossRefGoogle Scholar
  17. Halterman, D.A., Zhou, F.S., Wei, F.S., Wise, R.P. and Schulze-Lefert, P. (2001) The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specific to Blumeria graminis f.sp hordei in barley and wheat. Plant J. 25, 335–348.PubMedCrossRefGoogle Scholar
  18. Halterman, D.A., Wei, F.S. and Wise, R.P. (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol. 131, 558–567.PubMedCrossRefGoogle Scholar
  19. Halterman, D.A. and Wise, R.P. (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley Mla6 and Mla13 alleviates dependence on Rar1 for disease resistance signaling. Plant J. 38, 215–226.PubMedCrossRefGoogle Scholar
  20. Holzberg, S., Brosio, P., Gross, C. and Pogue, G.P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 3, 315–327.CrossRefGoogle Scholar
  21. Horvath, H., Rostoks, N., Brueggeman, R., Steffenson, B., von Wettstein, D. and Kleinhofs, A. (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc. Natl. Acad. Sci. USA 100, 364–369.PubMedCrossRefGoogle Scholar
  22. Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.PubMedGoogle Scholar
  23. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucin zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.PubMedCrossRefGoogle Scholar
  24. Lagudah, E.S., McFadden, H., Singh, R.P., Huerta-Espino, J., Bariana, H.S. and Spielmeyer, W. (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114, 21–30.PubMedCrossRefGoogle Scholar
  25. Leister, D. (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 20, 116–122.PubMedCrossRefGoogle Scholar
  26. Luo, M.C., Thomas, C.S., Deal, K.R., You, F.M., Anderson, O.D., Gu, Y.Q., Li, W., Kuraparthy, V., Gill, B., McGuire, P.E. and Dvorak, J. (2003) Construction of contigs of Ae.tauschii genomic DNA fragments cloned in BAC and BiBAC vectors. In: N.E. Ponga, M. Romano, E.A. Ponga and G. Galterio (Eds.), Proceedings of the 10th International Wheat Genetics Symposium. Istituto Sperimentale per la Ceralicoltura, Rome.Google Scholar
  27. McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J., Morris, C.F., Appels, R., Somers, D.J. and Anderson, O.A. (2007) Catalogue of gene symbols for wheat: 2007 supplement. In: W.R. Raupp (Ed.), Annual Wheat Newsletter, Volume 53. Kansas State University, Manhattan, KS, pp. 159–180.Google Scholar
  28. Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., Sourdille, P., Aberhalden, O., Keller, B. and Schachermayr, G. (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107, 1235–1242.PubMedCrossRefGoogle Scholar
  29. Paterson, A.H., Bowers, J.E. and Chapman, B.A. (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908.PubMedCrossRefGoogle Scholar
  30. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.PubMedCrossRefGoogle Scholar
  31. Qiu, J.W., Schurch, A.C., Yahiaoui, N., Dong, L.L., Fan, H.J., Zhang, Z.J., Keller, B. and Ling, H.Q. (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 115, 159–168.PubMedCrossRefGoogle Scholar
  32. Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.PubMedGoogle Scholar
  33. Schweizer, P., Pokorny, J., Abderhalden, O. and Dudler, R. (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol. Plant Microbe Int. 12, 647–654.CrossRefGoogle Scholar
  34. Scofield, S.R., Huang, L., Brandt, A.S. and Gill, B.S. (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138, 2165–2173.PubMedCrossRefGoogle Scholar
  35. Shen, Q.H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Shulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15, 732–744.PubMedCrossRefGoogle Scholar
  36. Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C. and Schulze-Lefert, P. (1999a) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366.Google Scholar
  37. Shirasu, K., Nielsen, K., Piffanelli, P., Oliver, R. and Schulze-Lefert, P. (1999b) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J. 17, 293–299.Google Scholar
  38. Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z.C., Tai, Y.S., Gill, B.S. and Farris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.PubMedCrossRefGoogle Scholar
  39. Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895.PubMedCrossRefGoogle Scholar
  40. Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97, 13436–13441.PubMedCrossRefGoogle Scholar
  41. Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F. and Graner, A. (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42, 912–922.PubMedCrossRefGoogle Scholar
  42. Sutton, T., Baumann, U., Hayes, J., Collins, N.C., Shi, B.J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M. and Langridge, P. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449.PubMedCrossRefGoogle Scholar
  43. Travella, S., Klimm, T.E. and Keller, B. (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 142, 6–20.PubMedCrossRefGoogle Scholar
  44. Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.PubMedCrossRefGoogle Scholar
  45. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.PubMedCrossRefGoogle Scholar
  46. Wei, F.S., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153, 1929–1948.PubMedGoogle Scholar
  47. Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E. and Keller, B. (2001) Analysis of a contigous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316.PubMedCrossRefGoogle Scholar
  48. Wicker, T., Guyot, R., Yahiaoui, N. and Keller, B. (2003) CACTA transposons in Triticeae – a diverse family of high-copy repetitive elements. Plant Physiol. 132, 52–63.PubMedCrossRefGoogle Scholar
  49. Wicker, T., Zimmermann, W., Perovic, D., Paterson, A.H., Ganal, M., Graner, A. and Stein, N. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J. 41, 184–194.PubMedCrossRefGoogle Scholar
  50. Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew reistance gene Pm3 from hexaploid wheat. Plant J. 37, 528–538.PubMedCrossRefGoogle Scholar
  51. Yahiaoui, N., Brunner, S. and Keller, B. (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 85–98.PubMedCrossRefGoogle Scholar
  52. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene Vrn1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.PubMedCrossRefGoogle Scholar
  53. Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004) The wheat Vrn2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.PubMedCrossRefGoogle Scholar
  54. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky, J. (2006) The wheat and barley vernalization gene Vrn3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.PubMedCrossRefGoogle Scholar
  55. Zhou, F.S., Kurth, J.C., Wei, F.S., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13, 337–350.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Plant Biology, University of ZürichSwitzerland

Personalised recommendations