Physical Mapping in the Triticeae

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


In contrast to small genome model species where whole genome “shotgun sequencing” is sufficient, physical maps are mandatory for the development of whole genome reference sequences of large and complex genomes, such as those of the Triticeae crop species wheat, barley, and rye. Access to a whole genome physical map allows efficient and nearly unlimited isolation of genes that underpin biological mechanisms and agronomical traits. The basic methodologies (fingerprinting, assembly) for constructing such maps were established years ago and are applicable generally to any kind of genome. However, the size and features of the wheat and barley genomes require specific considerations when developing the most cost efficient strategy.


Wheat Genome Radiation Hybrid Optical Mapping Barley Chromosome Barley Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashida T, Nasuda S, Sato K, et al. (2007) Dissection of barley chromosome 5 H in common wheat. Genes Genet Syst 82: 123–133PubMedCrossRefGoogle Scholar
  2. Aston C, Mishra B, Schwartz D C (1999) Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol 17: 297–302PubMedCrossRefGoogle Scholar
  3. Bennett M D, Smith J B (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274: 227–274PubMedCrossRefGoogle Scholar
  4. Bilgic H, Cho S, Garvin D F et al. (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat–barley ditelosomic chromosome addition lines. Genome 50: 898–906PubMedCrossRefGoogle Scholar
  5. Burke D T, Carle G F, Olson M V (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812PubMedCrossRefGoogle Scholar
  6. Cheng C H, Chung M C, Liu S M, et al. (2005) A fine physical map of the rice chromosome 5. Mol Genet Genom 274: 337–345CrossRefGoogle Scholar
  7. Cheng Z, Buell C, Wing R, et al. (2002) Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 10: 379–387PubMedCrossRefGoogle Scholar
  8. Cho S, Garvin D F, Muehlbauer G J (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172: 1277–1285PubMedCrossRefGoogle Scholar
  9. Coulson A, Sulston J, Brenner S, et al. (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83: 7821–7825PubMedCrossRefGoogle Scholar
  10. Cox D R (1992) Radiation hybrid mapping. Cytogenet Cell Genet 59: 80–81PubMedCrossRefGoogle Scholar
  11. Dean F B, Hosono S, Fang L, et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci 99: 5261–5266PubMedCrossRefGoogle Scholar
  12. Dear P H, Cook P R (1989) HAPPY mapping: A proposal for linkage mapping the human genome. Nucleic Acids Res 17: 6795–6807PubMedCrossRefGoogle Scholar
  13. Dimalanta E T, Lim A, Runnheim R, et al. (2004) A microfluidic system for large DNA molecule arrays. Anal Chem 76: 5293–5301PubMedCrossRefGoogle Scholar
  14. Ding Y, Johnson M D, Chen W Q et al. (2001) Five-color-based high-information-content fingerprinting of bacterial artificial chromosome clones using type IIS restriction endonucleases. Genomics 74: 142–154PubMedCrossRefGoogle Scholar
  15. Ding Y, Johnson M D, Colayco R, et al. (1999) Contig assembly of bacterial artificial chromosome clones through multiplexed fluorescence-labeled fingerprinting. Genomics 56: 237–246PubMedCrossRefGoogle Scholar
  16. Doležel J, Kubaláková M, Bartoš J, et al. (2005) Chromosome flow sorting and physical mapping. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 151–171CrossRefGoogle Scholar
  17. Doležel J, Kubaláková M, Paux E, et al. (2007) Chromosome-based genomics in the cereals. Chromosome Res 15: 51–66PubMedCrossRefGoogle Scholar
  18. Endo T (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15: 67–75PubMedCrossRefGoogle Scholar
  19. Endo T R (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. In common wheat. J Hered 79: 366–370Google Scholar
  20. Endo T R, Gill B S (1996) The deletion stocks of common wheat. J Hered 87: 295–307Google Scholar
  21. Feuillet C, Eversole K (2008) Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55: 307–313Google Scholar
  22. Flavell R B, Bennett M D, Smith J B, et al. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257–269PubMedCrossRefGoogle Scholar
  23. Gill K S (2004) Gene distribution in cereal genomes. In: Gupta PK, Varshney RK (eds.), Cereal genomics. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 361–384Google Scholar
  24. Goss S J, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255: 680–684PubMedCrossRefGoogle Scholar
  25. Hitte C, Madeoy J, Kirkness E F, et al. (2005) Facilitating genome navigation: Survey sequencing and dense radiation-hybrid gene mapping. Nat Rev Genet 6: 643–648PubMedCrossRefGoogle Scholar
  26. Jander G, Norris S R, Rounsley S D, et al. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129: 440–450PubMedCrossRefGoogle Scholar
  27. Jiang J, Gill B S (1994) Nonisotopic in situ hybridization and plant genome mapping: The first 10 years. Genome 37: 717–725PubMedCrossRefGoogle Scholar
  28. Jiang J, Gill B S (2006) Current status and the future of fluorescence in situ hybridization (fish) in plant genome research. Genome 49: 1057–1068PubMedCrossRefGoogle Scholar
  29. Jing J, Reed J, Huang J, et al. (1998) Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc Natl Acad Sci USA 95: 8046–8051PubMedCrossRefGoogle Scholar
  30. Joppa L (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33: 908–913CrossRefGoogle Scholar
  31. Joppa L, Williams N (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30: 222–228CrossRefGoogle Scholar
  32. Kalavacharla V, Hossain K, Gu Y, et al. (2006) High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173: 1089–1099PubMedCrossRefGoogle Scholar
  33. Kuenzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412Google Scholar
  34. Kynast R G, Okagaki R J, Galatowitsch M W, et al. (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci USA 101: 9921–9926PubMedCrossRefGoogle Scholar
  35. Lage J M, Leamon J H, Pejovic T, et al. (2003) Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-cgh. Genome Res. 13: 294–307PubMedCrossRefGoogle Scholar
  36. Lander E S, Waterman M S (1988) Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics 2: 231–239PubMedCrossRefGoogle Scholar
  37. Lapitan N L V, Brown S E, Kennard W, et al. (1997) Fish physical mapping with barley BAC clones. Plant J 11: 149–156CrossRefGoogle Scholar
  38. Leyser O, Chang C (1996) Chromosome walking. In: Foster GD, Twell D (eds.), Plant gene isolation. John Wiley and Sons, Ltd, Chichester, pp 248–271Google Scholar
  39. Luo M-C, Thomas C, You F M, et al. (2003a) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82: 378–389Google Scholar
  40. Luo M C, Thomas C S, Deal K R, et al. (2003b) Construction of contigs of Aegilops tauschii genomic DNA fragments cloned in BAC and BIBAC vectors. In: 10th International Wheat genetics Symposium, September 1–6, 2003, Paestum, Italy, pp 293–296Google Scholar
  41. Madishetty K, Condamine P, Svensson J T, et al. (2007) An improved method to identify bac clones using pooled overgos. Nucleic Acids Res 35: e5PubMedCrossRefGoogle Scholar
  42. Marra M A, Kucaba T A, Dietrich N L, et al. (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7: 1072–1084PubMedGoogle Scholar
  43. Masoudi-Nejad A, Nasuda S, Bihoreau M-T, et al. (2005) An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Mol Genet Genom 274: 589–594CrossRefGoogle Scholar
  44. Meksem K, Ishihara H, Jesse T (2005) Integration of physical and genetic maps. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 215–232CrossRefGoogle Scholar
  45. Meyers B C, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: Let’s get physical! Nat Rev Genet 5: 578–588PubMedCrossRefGoogle Scholar
  46. Nasuda S, Kikkawa Y, Ashida T, et al. (2005) Chromosomal assignment and deletion mapping of barley est markers. Genes Genet Syst 80: 357–366PubMedCrossRefGoogle Scholar
  47. Olson M V, Dutchik J E, Graham M Y et al. (1986) Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci USA 83: 7826–7830PubMedCrossRefGoogle Scholar
  48. Paux E, Roger D, Badaeva E, et al. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through bac-end sequencing on chromosome 3b. Plant J 48: 463–474PubMedCrossRefGoogle Scholar
  49. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W et al. (2008) A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science 322: 101–104Google Scholar
  50. Pedersen C, Linde-Laursen I (1995) The relationship between physical and genetic distances at the hor1 and hor2 loci of barley estimated by two-colour fluorescent in situ hybridization. Theor Appl Genet 91: 941–946CrossRefGoogle Scholar
  51. Peters J L, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8: 484–491PubMedCrossRefGoogle Scholar
  52. Qi L, Echalier B, Friebe B, et al. (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3: 39–55PubMedGoogle Scholar
  53. Qi L L, Echalier B, Chao S, et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712PubMedCrossRefGoogle Scholar
  54. Rayburn A, Biradar D, Bullock D, et al. (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300CrossRefGoogle Scholar
  55. Ren C, Xu Z, Sun S, et al. (2005) Genomic DNA libraries and physical mapping. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 173–214CrossRefGoogle Scholar
  56. Riera-Lizarazu O, Vales M I, Ananiev E V et al. (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156: 327–339PubMedGoogle Scholar
  57. Sadder M T, Weber G (2002) Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatreae spp. Theor Appl Genet 104: 908–915PubMedCrossRefGoogle Scholar
  58. Safar J, Bartos J, Janda J, et al. (2004) Dissecting large and complex genomes: Flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39: 960–968PubMedCrossRefGoogle Scholar
  59. Schwartz D C, Li X, Hernandez L, I et al. (1993) Ordered restriction maps of saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262: 110–114Google Scholar
  60. Shi F, Endo T (1997) Production of wheat-barley disomic addition lines possessing an aegilops cylindrica gametocidal chromosome. Genes Genet Syst 72: 243–248CrossRefGoogle Scholar
  61. Shizuya H, Birren B, Kim U-J, et al. (1992) Cloning and stable maintenance of 300-kilobase fragments of human DNA in Escherichia coli using and f-factor-based vector. Proc Natl Acad Sci USA 89: 8794–8797PubMedCrossRefGoogle Scholar
  62. Soderlund C, Humphray S, Dunham, A et al. (2000) Contigs built with fingerprints, markers, and FPC v4.7. Genome Res 10: 1772–1787PubMedCrossRefGoogle Scholar
  63. Soderlund C, Longden I, Mott R (1997) FPC: A system for building contigs from restriction fingerprinted clones. Comp Appl Biosci 13: 523–535PubMedGoogle Scholar
  64. Stein N, Graner A (2004) Map-based gene isolation in cereal genomes. In: Gupta P, Varshney R (eds.), Cereal genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 331–360Google Scholar
  65. Stephens J L, Brown S E, Lapitan N L V, et al. (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47: 179–189PubMedCrossRefGoogle Scholar
  66. Sulston J, Mallett F, Durbin R, et al. (1989) Image analysis of restriction enzyme fingerprint autoradiograms. Comp Appl Biosci 5: 101–106PubMedGoogle Scholar
  67. Sulston J, Mallett F, Staden R, et al. (1988) Software for genome mapping by fingerprinting techniques. Comp Appl Biosci 4: 125–132PubMedGoogle Scholar
  68. Telenius H, Carter N P, Bebb C E, et al. (1992) Degenerate oligonucleotide-primed pcr: General amplification of target DNA by a single degenerate primer. Genomics 13: 718–725PubMedCrossRefGoogle Scholar
  69. Thangavelu M, James A B, Bankier A, et al. (2003) HAPPY mapping in a plant genome: Reconstruction and analysis of a high-resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4. Plant Biotech J 1: 23–31CrossRefGoogle Scholar
  70. The International Human Genome Mapping C (2001) A physical map of the human genome. Nature 409: 934–941CrossRefGoogle Scholar
  71. Valarik M, Bartos J, Kovarova P, et al. (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37: 940–950PubMedCrossRefGoogle Scholar
  72. Varshney R K, Grosse I, Haehnel U et al. (2006) Genetic mapping and bac assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113: 239–250PubMedCrossRefGoogle Scholar
  73. Wang C-J R, Harper L, Cande W Z (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18: 529–544PubMedCrossRefGoogle Scholar
  74. Wardrop J, Fuller J, Powell W, et al. (2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags. Theor Appl Genet 108: 343–348PubMedCrossRefGoogle Scholar
  75. Wardrop J, Snape J, Powell W, et al. (2002) Constructing plant radiation hybrid panels. Plant J 31: 223–228PubMedCrossRefGoogle Scholar
  76. Waugh R, Dear P H, Powell W et al. (2002) Physical education – new technologies for mapping plant genomes. Trends Plant Sci 7: 521–523PubMedCrossRefGoogle Scholar
  77. Wei F, Coe E, Nelson W, et al. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3: e123PubMedCrossRefGoogle Scholar
  78. Wendl M C, Waterston R H (2002) Generalized gap model for bacterial artificial chromosome clone fingerprint mapping and shotgun sequencing. Genome Res 12: 1943–1949PubMedCrossRefGoogle Scholar
  79. Wong G K S, Yu J, Thayer E C et al. (1997) Multiple-complete-digest restriction fragment mapping: Generating sequence-ready maps for large-scale DNA sequencing. Proc Natl Acad Sci USA 94: 5225–5230PubMedCrossRefGoogle Scholar
  80. Wu C, Sun S, Lee M-K, et al. (2005) Whole-genome physical mapping: An overview on methods for DNA fingerprinting. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 257–306CrossRefGoogle Scholar
  81. You F M, Luo M-C, Gu Y Q, et al. (2007) Genoprofiler: Batch processing of high-throughput capillary fingerprinting data. Bioinformatics 23: 240–242PubMedCrossRefGoogle Scholar
  82. Yu Y, Tomkins J P, Waugh R, et al. (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101: 1093–1099CrossRefGoogle Scholar
  83. Zhang L, Cui X, Schmitt K, et al. (1992) Whole genome amplification from a single cell: Implications for genetic analysis. Proc Natl Acad Sci 89: 5847–5851PubMedCrossRefGoogle Scholar
  84. Zhou S, Bechner M C, Place M, et al. (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8: 278PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Germany

Personalised recommendations