Chromosome Genomics in the Triticeae

  • Jaroslav Doležel
  • Hana Šimková
  • Marie Kubaláková
  • Jan Šafář
  • Pavla Suchánková
  • Jarmila Číhalíková
  • Jan Bartoš
  • Miroslav Valárik
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 7)


The Triticeae species are unique among the important agricultural crops in possessing massive genomes with a prevalence of dispersed DNA repeats. The highest level of complexity is observed in tetraploid and hexaploid wheat whose nuclear genomes comprise two and three homoeologous genomes, respectively. Polyploidy and the presence of repeats make gene cloning and genome sequencing in the Triticeae extremely difficult. Chromosome genomics simplifies these tasks by targeting single chromosomes and chromosome arms, which represent only a few percent of the nuclear genomes. The advantages of this strategy over a whole-genome approach include the avoidance of problems due to the presence of homoeologs in wheat, reduction of work to manageable portions, cost efficiency, and an opportunity to structure collaborative projects where individual laboratories work on particular chromosomes. In this chapter, we describe how chromosomes and chromosome arms can be isolated by flow cytometric sorting and we review development of flow cytogenetics in the Triticeae. We then discuss various applications of flow-sorted chromosomes and assess the potential of chromosome genomics in the Triticeae.


Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Hexaploid Wheat Wheat Chromosome Bacterial Artificial Chromosome Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Drs. Prasanna Bhat, Timothy Close, Catherine Feuillet, Andrzej Kilian and Wolfgang Spielmeyer for permissions to cite their unpublished work. Parts of this work have been supported by the Czech Science Foundation (grant awards 521/06/1723 and 521/07/1573) and Ministry of Education, Youth and Sports of the Czech Republic (grant awards LC06004 and OC08025).


  1. Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Lazo, G.R., Chao, S.M., Anderson, O.D., David, J., Qi, L.L., Echalier, B., Gill, B.S., Miftahudin, Gustafson, J.P., La Rota, M., Sorrells, M.E., Zhang, D.S., Nguyen, H.T., Kalavacharla, V., Hossain, K., Kianian, S.F., Peng, J.H., Lapitan, N.L.V., Wennerlind, E.J., Nduati, V., Anderson, J.A., Sidhu, D., Gill, K.S., McGuire, P.E., Qualset, C.O. and Dvorak, J. (2003) Synteny perturbations between wheat homoeologous chromosomes cause by locus duplications and deletions correlate with recombination rates. Proc. Natl. Acad. Sci. USA 100, 10836–10841.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson, O.D., Rausch, C., Moullet, O. and Lagudah, E.S. (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct. Integr. Genomics 3, 56–68.PubMedGoogle Scholar
  3. Allouis, S., Moore, G., Bellec, A., Sharp, R., Faivre Rampant, P., Mortimer, K., Pateyron, S., Foote, T.N., Griffiths, S., Caboche, M. and Chalhoub, B. (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res. Commun. 31, 331–338.Google Scholar
  4. Arumuganathan, K., Slattery, J.P., Tanksley, S.D. and Earle, E.D. (1991) Preparation and flow cytometric analysis of metaphase chromosomes of tomato. Theor. Appl. Genet. 82, 101–111.PubMedGoogle Scholar
  5. Arumuganathan, K., Martin, G.B., Telenius, H., Tanksley, S.D. and Earle, E.D. (1994) Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Mol. Gen. Genet. 242, 551–558.PubMedCrossRefGoogle Scholar
  6. Bartoš, J., Paux, E., Kofler, R., Havránková, M., Kopecký, D., Suchánková, P., Šafář, J., Šimková, H., Town, C.D., Lelley, T., Feuillet, C. and Doležel, J. (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biology 8, 95, doi:10.1186/1471-2229-8-95.Google Scholar
  7. Bennett, M.D. and Smith, J.B. (1976) Nuclear DNA amounts in angiosperms. Philos. T. R. Soc. B. 274, 227–274.CrossRefGoogle Scholar
  8. Bennett, M.D. and Smith, J.B. (1991) Nuclear DNA amounts in angiosperms. Philos. T. R. Soc. B. 334, 309–345.CrossRefGoogle Scholar
  9. Bennetzen, J.L. (2007) Patterns in grass genome evolution. Curr. Opin. Plant Biol. 10, 176–181.PubMedCrossRefGoogle Scholar
  10. Boschman, G.A., Manders, E.M.M., Rens, W., Slater, R. and Aten, J.A. (1992) Semi-automated detection of aberrant chromosomes in bivariate flow karyotypes. Cytometry 13, 469–477.PubMedCrossRefGoogle Scholar
  11. Carrano, A.V., Gray, J.W., Langlois, R.G. and Yu, L.C. (1983) Flow cytogenetics: Methodology and applications. In: J.D. Rowley and J.E. Ultmann (Eds.), Chromosomes and Cancer. Academic Press, Inc., New York, pp. 195–209.Google Scholar
  12. Chalhoub, B., Belcram, H. and Caboche, M. (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol. J. 2, 181–188.PubMedCrossRefGoogle Scholar
  13. Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Dossat, C., Sourdille, P., Joudrier, P., Gautier, M.F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops). Plant Cell 17, 1033–1045.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen, W., Kalscheu, V., Tzschach, A., Menzel, C., Ullmann, R., Schulz, M., Erdogan, F., Li, N., Kijas, Z., Arkesteijn, G., Pajares, I.L., Goetz-Sothmann, M., Heinrich, U., Rost, I., Dufke, A., Grasshoff, U., Glaeser, B.G., Vingron, M. and Dopere, H.H. (2008) Mapping translocation breakpoints by next-generation sequencing. Genome. Res. 18, 1143–1149.Google Scholar
  15. Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., Driscoll, M., Song, W., Kingsmore, S.F., Egholm, M. and Lasken, R.S. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266.PubMedCrossRefPubMedCentralGoogle Scholar
  16. de Jong, J.H., Fransz, P. and Zabel, P. (1999) High resolution FISH in plants – techniques and applications. Trends Plant. Sci. 4, 258–263.CrossRefGoogle Scholar
  17. de Laat, A.M.M. and Blaas, J. (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor. Appl. Genet. 67, 463–467.PubMedGoogle Scholar
  18. Devos, K.M. (2005) Updating the ‘crop circle’. Curr. Opin. Plant Biol. 8, 155–162.PubMedCrossRefGoogle Scholar
  19. Doležel, J. and Lucretti, S. (1995) High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theor. Appl. Genet. 90, 797–802.PubMedCrossRefGoogle Scholar
  20. Doležel, J., Číhalíková, J. and Lucretti, S. (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188, 93–98.PubMedCrossRefGoogle Scholar
  21. Doležel, J., Lucretti, S. and Schubert, I. (1994) Plant chromosome analysis and sorting by flow cytometry. Crit. Rev. Plant Sci. 13, 275–309.Google Scholar
  22. Doležel, J., Bartoš, J., Voglmayr, H. and Greilhuber, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128.PubMedCrossRefGoogle Scholar
  23. Doležel, J., Greilhuber, J. and Suda, J. (2007a) Flow cytometry with plants: an overview. In: J. Doležel, J. Greilhuber and J. Suda (Eds.), Flow Cytometry with Plant Cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 41–65.Google Scholar
  24. Doležel, J., Kubaláková, M., Paux, E., Bartoš, J. and Feuillet, C. (2007b) Chromosome-based genomics in cereals. Chromosome Res. 15, 51–66.Google Scholar
  25. Doležel, J., Kubaláková, M., Suchánková, P., Kovářová, P., Bartoš, J. and Šimková, H. (2007c) Chromosome analysis and sorting. In: J. Doležel, J. Greilhuber and J. Suda (Eds.), Flow Cytometry with Plant Cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 373–403.Google Scholar
  26. Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M. A., Nardi, L. and Obermayer, R. (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 82 (Suppl. A), 17–26.CrossRefGoogle Scholar
  27. Doležel, J., Kubaláková, M., Vrána, J. and Bartoš, J. (2004) Flow cytogenetics. In: R.M. Goodman (Ed.), Encyclopedia of Plant and Crop Science. Marcel Dekker, Inc., New York, pp. 460–463.Google Scholar
  28. Dvorak, J., Yang, Z.L., You, F.M. and Luo, M.C. (2004) Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168, 1665–1675.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Endo, T.R. and Gill, B.S. (1996) The deletion stocks of common wheat. J. Hered. 87, 295–307.CrossRefGoogle Scholar
  30. Feldman, M. and Levy, A.A. (2005) Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet. Genome Res. 109, 250–258.PubMedCrossRefGoogle Scholar
  31. Feuillet, C. and Keller, B. (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. 89, 3–10.PubMedCrossRefGoogle Scholar
  32. Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. and Keller, B. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gill, B.S. (1987) Chromosome banding methods, standard, chromosome nomenclature and applications in cytogenetic analysis. In: E.G. Heyne (Ed.), Wheat and wheat improvement. American Society of Agronomy, Madison, pp. 243–254.Google Scholar
  34. Gill, B.S., Li, W., Sehgal, S.K., Faris, J., Reddy, L., Devos, K.M., Buell, R., Gornicki, P., Rabinowicz, P.D., Doležel, J., Šimková, H., Šafář, J., Ma, Y., Chen, F., Lucretti, S., You, F.M. and Luo, M.C. (2008) Progress towards the construction of a sequence-ready physical map of the 3AS chromosome arm of hexaploid wheat. In: Abstracts of the International Conference “Plant and Animal Genome XVI”. Sherago International, Inc., San Diego, p. 121.Google Scholar
  35. Gill, K.S., Arumuganathan, K. and Lee, J.H. (1999) Isolating individual wheat (Triticum aestivum) chromosome arm by flow cytometric analysis of ditelosomic lines. Theor. Appl. Genet. 98, 1248–1252.CrossRefGoogle Scholar
  36. Grunwald, D., Frelat, G. and Vaimanm, M. (1989) Animal flow cytogenetics. In: A. Yen (Ed.), Flow cytometry: advanced research and clinical applications. Vol. 1. CRC Press, Inc., Boca Raton, pp. 132–140.Google Scholar
  37. Gualberti, G., Doležel, J., Macas, J. and Lucretti, S. (1996) Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. Theor. Appl. Genet. 92, 744–751.PubMedCrossRefGoogle Scholar
  38. Huang, L., Brooks, S.A., Li, W.L., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.PubMedPubMedCentralGoogle Scholar
  39. Islam, A.K.M.R. (1983) Ditelosomic additions of barley chromosomes to wheat. In: S. Sakamoto (Ed.), Proceedings of 6th International Wheat Genetics Symposium. Kyoto University Press, Kyoto, pp. 233–238.Google Scholar
  40. Islam, A.K.M.R., Shepherd, K.W. and Sparrow, D.H.B. (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46, 161–174.CrossRefGoogle Scholar
  41. Islam, A.K.M.R. and Shepherd, K.W. (1990) Incorporation of barley chromosomes into wheat. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry 13. (Wheat). Springer-Verlag, Berlin Heidelberg, pp. 128–151.Google Scholar
  42. Islam, A.K.M.R. and Shepherd, K.W. (2000) Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica 111, 145–149.CrossRefGoogle Scholar
  43. Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A. (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001 29, e25; doi:10.1093/nar/29.4.e25.Google Scholar
  44. Janda, J., Bartoš, J., Šafář, J., Kubaláková, M., Valárik, M., Číhalíková, J., Šimková, H., Caboche, M., Sourdille, P., Bernard, M., Chalhoub, B. and Doležel, J. (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor. Appl. Genet. 109, 1337–1345.PubMedCrossRefGoogle Scholar
  45. Janda, J., Šafář, J., Kubaláková, M., Bartoš, J., Kovářová, P., Suchánková, P., Pateyron, S., Číhalíková, J., Sourdille, P., Šimková, H., Fairaivre-Rampant, P., Hřibová, E., Bernard, M., Lukaszewski, A., Doležel, J. and Chalhoub, B. (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J. 47, 977–986.PubMedCrossRefGoogle Scholar
  46. Joppa, L.R. (1993) Chromosome engineering in tetraploid wheat. Crop. Sci. 33, 908–913.CrossRefGoogle Scholar
  47. Kofler, R., Bartoš, J., Gong, L., Stift, G., Suchánková, P., Šimková, H., Berenyi, M., Burg, K., Doležel, J. and Lelley, T. (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor. Appl. Genet. 117, 915–926.Google Scholar
  48. Kong, X.Y., Gu, Y.Q., You, F.M., Dubcovsky, J. and Anderson, O.D. (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region of two genomes of allopolyploid wheat. Plant. Molec. Biol. 54, 55–69.CrossRefGoogle Scholar
  49. Kovářová, P., Navrátilová, A., Macas, J. and Doležel, J. (2007) Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biol. Plant. 51, 43–48.CrossRefGoogle Scholar
  50. Kubaláková, M., Macas, J. and Doležel, J. (1997) Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 94, 758–763.CrossRefGoogle Scholar
  51. Kubaláková, M., Vrána, J., Číhalíková, J., Šimková, H. and Doležel, J. (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372.PubMedCrossRefGoogle Scholar
  52. Kubaláková, M., Valárik, M., Bartoš, J., Vrána, J., Číhalíková, J., Molnár-Láng, M. and Doležel, J. (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905.PubMedCrossRefGoogle Scholar
  53. Kubaláková, M., Kovářová, P., Suchánková, P., Číhalíková, J., Bartoš, J., Lucretti, S., Watanabe, N., Kianian, S.F. and Doležel, J. (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170, 823–829.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lamoureux, D., Peterson, D.G., Li, W., Fellers, J.P. and Gill, B.S. (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48, 1120–1126.PubMedCrossRefGoogle Scholar
  55. Langer, S., Kraus, J., Jentsch, I. and Speicher, M.R. (2004) Multicolor chromosome painting in diagnostic and research applications. Chromosome Res. 12, 15–23.PubMedCrossRefGoogle Scholar
  56. Lee, J.H., Arumuganathan, K., Yen, Y., Kaeppler, S., Kaeppler, H. and Baenziger, P.S. (1997) Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L.). Genome 40, 633–638.PubMedCrossRefGoogle Scholar
  57. Lee, J.H., Arumuganathan, K., Chung, Y.S., Kim, K.Y., Chung, W.B., Bae, K.S., Kim, D.H., Chung, D.S. and Kwon, O.C. (2000) Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L.). Mol. Cells 10, 619–625.PubMedGoogle Scholar
  58. Li, L. and Arumuganathan, K. (2001) Physical mapping of 45S and 5S rDNA on maize metaphase and sorted chromosomes by FISH. Hereditas 134, 141–145.PubMedCrossRefGoogle Scholar
  59. Li, W.L., Zhang, P., Fellers, J.P., Friebe, B. and Gill, B.S. (2004) Sequence composition, organization and evolution of a basic Triticeae genome of the grass family. Plant J. 40, 500–511.PubMedCrossRefGoogle Scholar
  60. Ling, P. and Chen, X.M. (2005) Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome 48, 1028–1036.PubMedCrossRefGoogle Scholar
  61. Lucretti, S. and Doležel, J. (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28, 236–242.PubMedCrossRefGoogle Scholar
  62. Lucretti, S., Doležel, J., Schubert, I. and Fuchs, J. (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor. Appl. Genet. 85, 665–672.PubMedCrossRefGoogle Scholar
  63. Luo, M.C., Thomas, C., You, F.M., Hsiao, J., Shu, O.Y., Buell, C.R., Malandro, M., McGuire, P.E., Anderson, O.D. and Dvorak, J. (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82, 378–389.PubMedCrossRefGoogle Scholar
  64. Luo, M.C., Ma, Y., Deal, K.R., Cao, S., Šafář, J., Šimková, H., Doležel, J., Li, W., Gill, B.S., Gu, Y.Q. and Dvořák, J. (2008) Physical mapping of wheat genomes: Knowledge, resources and strategies. In: Abstracts of the International Conference “Plant and Animal Genome XVI”. Sherago International, Inc., San Diego, p. 67.Google Scholar
  65. Lysák, M.A. and Doležel, J. (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52, 123–132.CrossRefGoogle Scholar
  66. Lysák, M.A., Číhalíková, J., Kubaláková, M., Šimková, H., Künzel, G. and Doležel, J. (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res. 7, 431–444.PubMedCrossRefGoogle Scholar
  67. Ma, Y., Lee, J.H., Li, L.C., Uchiyama, S., Ohmido, N. and Fukui, K. (2005) Fluorescent labeling of plant chromosomes in suspension by FISH. Genes Genet. Syst. 80, 35–39.PubMedCrossRefGoogle Scholar
  68. Macas, J., Doležel, J., Lucretti, S., Pich, U., Meister, A., Fuchs, J. and Schubert, I. (1993) Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res. 1, 107–115.PubMedCrossRefGoogle Scholar
  69. Macas, J., Doležel, J., Gualberti, G., Pich, U., Schubert, I. and Lucretti, S. (1995) Primer-induced labeling of pea and field bean chromosomes in situ and in suspension. BioTechniques 19, 402–408.PubMedGoogle Scholar
  70. Mardis, E.R. (2008) The impact of next-generation sequencing technology on genetics. – Trends Genet. 24, 133–141.PubMedCrossRefGoogle Scholar
  71. Martienssen, R.A., Rabinowicz, P.D., O’Shaughnessy, A. and McCombie, W.R. (2004) Sequencing the maize genome. Curr. Opin. Plant Biol. 7, 102–107.PubMedCrossRefGoogle Scholar
  72. McNeil, M.D., Kota, R., Paux, E., Dunn, D., McLean, R., Feuillet, C., Li, D., Kong, X., Lagudah, E., Zhang, J.C., Jia, J.Z., Spielmeyer, W., Bellgard, M. and Appels, R. (2008) BAC-derived markers for assaying the stem rust resistance gene, Sr2, in wheat breeding programs. Mol. Breed., DOI 10.1007/s11032-007-9152-4.Google Scholar
  73. Miller, T.E. (1984) The homoeologous relationship between the chromosomes of rye and wheat. Can. J. Genet. Cytol. 26, 578–589.Google Scholar
  74. Mukai, Y., Friebe, B. and Gill, B.S. (1992) Comparison of C-banding patterns and in situ hybridization sites using higly repetitive and total genomic rye DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn. J. Genet. 67, 71–83.CrossRefGoogle Scholar
  75. Nilmalgoda, S.D., Cloutier, S. and Walichnowski, A.Z. (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46, 870–878.PubMedCrossRefGoogle Scholar
  76. Paux, E., Roger, D., Badaeva, E., Gay, G., Bernard, M., Sourdille, P. and Feuillet, C. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48, 463–474.PubMedCrossRefGoogle Scholar
  77. Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Bergès, H., Eversole, K., Appels, R., Šafář, J., Šimková, H., Doležel, J., Bernard, M. and Feuillet, C. (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322, 101–104.Google Scholar
  78. Peterson, D.G., Wessler, S.R. and Paterson, A.H. (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet. 18, 547–550.PubMedCrossRefGoogle Scholar
  79. Pop, M. and Salzberg, S.L. (2008) Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Požárková, D., Koblížková, A., Román, B., Torres, A.M., Lucretti, S., Lysák, M.A., Doležel, J. and Macas, J. (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol. Plant. 45, 337–345.CrossRefGoogle Scholar
  81. Rabinowicz, P.D., Schutz, K., Dedhia, N., Yordan, C., Pernell, L.D., Stein, L., McCombie, W.R. and Martienssen, R.A. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat. Genet. 23, 305–308.PubMedCrossRefGoogle Scholar
  82. Ratnayaka, I., Baga, M., Fowler, D.B. and Chibbar, R.N. (2005) Construction and Characterization of a BAC Library of a Cold-Tolerant Hexaploid Wheat Cultivar. Crop Sci. Soc. Am. 45, 1571–1577.CrossRefGoogle Scholar
  83. Román, B., Šatovič, Z., Požárková, D., Macas, J., Doležel, J., Cubero, J.I. and Torres, A.M. (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor. Appl. Genet. 108, 1079–1088.PubMedCrossRefGoogle Scholar
  84. Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P.R., Roose, M.L., Svensson, J.T., Stein, N., Varshney, R.K., Marshall, D.F., Graner, A., Close, T.J. and Waugh, R. (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc. Natl. Acad. Sci. USA 103, 18656–18661.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Saisho, D., Myoraku, E., Kawasaki, S., Sato, K. and Takeda, K. (2007) Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety ‘Haruna Nijo’. Breed. Sci. 57, 29–38.CrossRefGoogle Scholar
  86. Šafář, J., Bartoš, J., Janda, J., Bellec, A., Kubaláková, M., Valárik, M., Pateyron, S., Weiserová, J., Tušková, R., Číhalíková, J., Vrána, J., Šimková, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Doležel, J. and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968.PubMedCrossRefGoogle Scholar
  87. Schubert, I., Doležel, J., Houben, A., Scherthan, H. and Wanner, G. (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102, 96–101.CrossRefGoogle Scholar
  88. Schwarzacher, T., Wang, M.L., Leitch, A.R., Miller, N., Moore, G. and Heslop-Harrison, J.S. (1997) Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor. Appl. Genet. 94, 91–97.PubMedCrossRefGoogle Scholar
  89. Sears, E.R. (1954) The aneuploids of common wheat. Missouri Agric. Exp. Stn. Res. Bull. 572, 1–58.Google Scholar
  90. Šimková, H., Číhalíková, J., Vrána, J., Lysák, M.A. and Doležel, J. (2003) Preparation of high molecular weight DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 46, 369–373.CrossRefGoogle Scholar
  91. Šimková, H., Janda, J., Hřibová, E., Šafář, J., Doležel, J. (2007) Cot-based cloning and sequencing of the short arm of wheat chromosome 1B. Plant Soil Environ. 53, 437–441.Google Scholar
  92. Šimková, H., Šafář, J., Suchánková, P., Číhalíková, J., Kubaláková, M., Lucretti, S., Gill, B.S. and Doležel, J. (2008a) Expanding chromosome-specific BAC resources for the D genome of hexaploid wheat. In: Abstracts of the International Conference “Plant and Animal Genome XVI”. Sherago International, Inc., San Diego, p. 185.Google Scholar
  93. Šimková, H., Šafář, J., Suchánková, P., Číhalíková, J., Kubaláková, M., Lucretti, S., Gill, B.S. and Doležel, J. (2008b) New generation of chromosome-specific BAC resources for wheat. In: Abstracts of the International Conference “Molecular Mapping & Marker Assisted Selection in Plants”. University of Vienna, Vienna, p. 94.Google Scholar
  94. Šimková, H., Svensson, J.T., Condamine, P., Hřibová, E., Suchánková, P., Bhat, P.R., Bartoš, J., Šafář, J., Close, T.J. and Doležel, J. (2008c) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9, 294, doi:10.1186/1471-2164-9-294.Google Scholar
  95. Šimková, H., Šafář, J., Suchánková, P., Kovářová, P., Bartoš, J., Kubaláková, M., Janda, J., Číhalíková, J., Mago, R., Lelley, T. and Doležel, J. (2008d) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics 9, 237, doi:10.1186/1471-2164-9-237.Google Scholar
  96. Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97, 13436–13441.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Suchánková, P., Kubaláková, M., Kovářová, P., Bartoš, J., Číhalíková, J., Molnár-Láng, M., Endo, T.R. and Doležel, J. (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor. Appl. Genet. 113, 651–659.PubMedCrossRefGoogle Scholar
  98. Suchánková, P., Kubaláková, M., Zagorová, H., Číhalíková, J., Gill, B., and Doležel, J. (2008) Flow cytogenetics facilitates dissection of the complex wheat genome. In: Abstracts of the International Conference “Molecular Mapping & Marker Assisted Selection in Plants”. University of Vienna, Vienna, p. 94.Google Scholar
  99. Tian, Y., Nie, W., Wang, J., Ferguson-Smith, M.A. and Yang, F. (2004) Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res. 12, 55–63.PubMedCrossRefGoogle Scholar
  100. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.PubMedCrossRefGoogle Scholar
  101. Valárik, M., Bartoš, J., Kovářová, P., Kubaláková, M., de Jong, H. and Doležel, J. (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J. 37, 940–950.PubMedCrossRefGoogle Scholar
  102. Van Dilla, M. A. and Deaven, L. L. (1990) Construction of gene libraries for each human chromosome. Cytometry 11, 208–218.PubMedCrossRefGoogle Scholar
  103. Van Dilla, M.A., Deaven, L.L., Albright, K.L., Allen, N.A., Aubuchon, M.R., Bartholdi, M.F., Brown, N.C., Campbell, E.W., Carrano, A.V., Clark, L.M., Cram, L.S., Crawford, B.D., Fuscoe, J.C., Gray, J.W., Hildebrand, C.E., Jackson, P.J., Jett, J.H., Longmire, J.L., Lozes, C.R., Luedemann, M.L., Martin, J.C., McNinch, J.S., Meincke, L.J., Mendelsohn, M.L., Meyne, J., Moyzis, R.K., Munk, A.C., Perlman, J., Peters, D.C., Silva, A.J. and Trask, B.J. (1986) Human chromosome-specific DNA libraries. Construction and availability. Biotechnology 4, 537–552.CrossRefGoogle Scholar
  104. Vláčilová, K., Ohri, D., Vrána, J., Číhalíková, J., Kubaláková, M., Kahl, G. and Doležel, J. (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res. 10, 695–706.PubMedCrossRefGoogle Scholar
  105. Vrána, J., Kubaláková, M., Šimková, H., Číhalíková, J., Lysák, M.A. and Doležel, J. (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041.PubMedPubMedCentralGoogle Scholar
  106. Wang, M.L., Leitch, A.R., Schwarzacher, T., Heslop-Harrison, J.S. and Moore, G. (1992) Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nucleic Acids Res. 20, 1897–1901.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A. (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barely. Proc. Natl. Acad. Sci. USA 101, 9915–9920.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J. and Keller, B. (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15, 1186–1197.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538.PubMedCrossRefGoogle Scholar
  110. Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.PubMedCrossRefGoogle Scholar
  111. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., Dubcovsky, J. (2003) Positional cloning of wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yu, Y., Tomkins, J.P., Waugh, R., Frisch, D.A., Kudrna, D., Kleinhofs, A., Brueggeman, R.S., Muehlbauer, G.J., Wise, R.P. and Wing, R.A. (2000) A bacterial artificial chromosome library for barely (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101, 1093–1099.CrossRefGoogle Scholar
  113. Zhou, R.N. and Hu, Z.M. (2007) The development of chromosome microdissection and microcloning technique and its applications in genomic research. Current Genomics 8, 67–72.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jaroslav Doležel
    • 1
    • 2
  • Hana Šimková
    • 1
    • 2
  • Marie Kubaláková
    • 1
    • 2
  • Jan Šafář
    • 1
  • Pavla Suchánková
    • 1
  • Jarmila Číhalíková
    • 1
    • 2
  • Jan Bartoš
    • 1
  • Miroslav Valárik
    • 1
  1. 1.Laboratory of Molecular Cytogenetics and CytometryInstitute of Experimental BotanyCZ-77200 OlomoucCzech Republic
  2. 2.Department of Cell Biology and GeneticsPalacký UniversityOlomoucCzech Republic

Personalised recommendations