Modes of Mechanical Ventilation: Part 1

  • Nathaniel Marchetti
  • Christopher B. Remakus
  • Ubaldo J. Martin
  • Gerard J. Criner


After studying this chapter, you should be able to: Understand the indications for mechanical ventilation, distinguishing hypercapnic vs. hypoxemic respiratory failure. Recognize the various modes of mechanical ventilation and their specific indications. Recognize alternate modes of mechanical ventilation and adjunctive therapies.


Continuous Positive Airway Pressure Tidal Volume Airway Pressure Acute Respiratory Distress Syndrome Inspiratory Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301-1308.Google Scholar
  2. 2.
    Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32(9):1817-1824.PubMedCrossRefGoogle Scholar
  3. 3.
    Imsand C, Feihl F, Perret C, Fitting JW. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology. 1994;80(1):13-22.PubMedCrossRefGoogle Scholar
  4. 4.
    Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896-903.PubMedGoogle Scholar
  5. 5.
    Esteban A, Alia I, Gordo F, et al. Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. for the spanish lung failure collaborative group. Chest. 2000;117(6):1690-1696.PubMedCrossRefGoogle Scholar
  6. 6.
    Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23(2):183-199, viii-ix.PubMedCrossRefGoogle Scholar
  7. 7.
    Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327-336.PubMedCrossRefGoogle Scholar
  8. 8.
    Ranieri VM, Giuliani R, Cinnella G, et al. Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis. 1993;147(1):5-13.PubMedCrossRefGoogle Scholar
  9. 9.
    Krishnan JA, Brower RG. High-frequency ventilation for acute lung injury and ARDS. Chest. 2000;118(3):795-807.PubMedCrossRefGoogle Scholar
  10. 10.
    Chan KP, Stewart TE, Mehta S. High-frequency oscillatory ventilation for adult patients with ARDS. Chest. 2007;131(6):1907-1916.PubMedCrossRefGoogle Scholar
  11. 11.
    Soll RF. The clinical impact of high frequency ventilation: review of the cochrane meta-analyses. J Perinatol. 2006;26 suppl 1:S38-S42; discussion S43-S45.PubMedCrossRefGoogle Scholar
  12. 12.
    Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801-808.PubMedCrossRefGoogle Scholar
  13. 13.
    Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9(4):R430-R439.PubMedCrossRefGoogle Scholar
  14. 14.
    Seymour CW, Frazer M, Reilly PM, Fuchs BD. Airway pressure release and biphasic intermittent positive airway pressure ventilation: are they ready for prime time? J Trauma. 2007;62(5):1298-1308; discussion 1308-1309.PubMedCrossRefGoogle Scholar
  15. 15.
    Fan E, Stewart TE. New modalities of mechanical ventilation: high-frequency oscillatory ventilation and airway pressure release ventilation. Clin Chest Med. 2006;27(4):615-625; abstract viii-ix.PubMedCrossRefGoogle Scholar
  16. 16.
    Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury: Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994;149(6):1550-1556.PubMedGoogle Scholar
  17. 17.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-1248.PubMedGoogle Scholar
  18. 18.
    Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43-49.PubMedGoogle Scholar
  19. 19.
    Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221-226.PubMedCrossRefGoogle Scholar
  20. 20.
    Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettila VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48(6):722-731.PubMedCrossRefGoogle Scholar
  21. 21.
    Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist–better approaches to patient ventilator synchrony? Clin Chest Med. 2008;29(2):329-342, vii.PubMedCrossRefGoogle Scholar

Additional Reading

  1. Appendini L, Purro A, Patessio A, et al. Partitioning of inspiratory pressure workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med. 1996;154:1301-1309.PubMedGoogle Scholar
  2. Hirschl RB. Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA. 1996;275:383-389.PubMedCrossRefGoogle Scholar
  3. Esteban A, Ferguson ND, Meade MO, et al. Evolution of mechanical ventilation in response to clinical research. Am J Resp Crit Care Med. 2008;177:170-177.PubMedCrossRefGoogle Scholar
  4. Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist—better approaches to ventilator synchrony? Clin Chest Med. 2008;29:329-342.PubMedCrossRefGoogle Scholar
  5. Siau C, Stewart TE. Current role of high frequency oscillatory ventilation and airway pressure release ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med. 2008;29:265-275.PubMedCrossRefGoogle Scholar
  6. Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23:183-199.PubMedCrossRefGoogle Scholar
  7. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34-47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nathaniel Marchetti
    • 1
  • Christopher B. Remakus
    • 1
  • Ubaldo J. Martin
    • 2
  • Gerard J. Criner
    • 3
  1. 1.Division of Pulmonary and Critical Care MedicineTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of Pulmonary and Critical Care MedicineTemple University HospitalPhiladelphiaUSA
  3. 3.Pulmonary and Critical Care Medicine and Temple Lung CenterTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations