Metabolic Disturbances of Acid–Base and Electrolytes

  • Jesse Goldman
  • Gautam S. Choure


After studying this chapter, you should be able to: Use a systematic approach to identify the types of acid–base disorders. Be proficient in calculating the anion gap (AG) and the delta:delta equations. Differentiate among common causes of elevated AG and non-AG acidoses. Identify common causes of metabolic alkalosis. List the common causes, clinical symptoms, and physical examination signs of: Hyponatremia Hypernatremia Hypokalemia Hyperkalemia Hypocalcemia Hypercalcemia Hypomagnesemia Hypermagnesemia Hypophosphatemia Hyperphosphatemia Determine the treatment options for the electrolyte disorders listed.


Metabolic Alkalosis Nephrogenic Diabetes Insipidus Serum Bicarbonate Respiratory Alkalosis Central Diabetes Insipidus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Narins RG, Emmett M. Simple and mixed acid–base disorders: a practical approach. Medicine (Baltimore). 1980;59:161-187.Google Scholar
  2. 2.
    Rose BD, Post TW. Clinical Physiology of Acid–Base and Electrolyte Disorders. 5th ed. New York: McGraw-Hill; 2001: 542-545.Google Scholar
  3. 3.
    Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2:162.PubMedCrossRefGoogle Scholar
  4. 4.
    Gabow PA. Disorders associated with an altered anion gap. Kidney Int. 1985;27:472.PubMedCrossRefGoogle Scholar
  5. 5.
    Batlle DC, Hizon M, Cohen E, et al. The use of the urine anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318:594.PubMedCrossRefGoogle Scholar
  6. 6.
    Khanna A, Kurtzman NA. Metabolic alkalosis. J Nephrol. 2006; 19(suppl 9):S86.PubMedGoogle Scholar
  7. 7.
    Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000; 342:1581.PubMedCrossRefGoogle Scholar
  8. 8.
    Pham PC, Pham PM, Pham PT, et al. Vasopressin excess and hyponatremia. Am J Kidney Dis. 2006;47:727.PubMedCrossRefGoogle Scholar
  9. 9.
    Gross P. Treatment of severe hyponatremia. Kidney Int. 2001;60:2417.PubMedCrossRefGoogle Scholar
  10. 10.
    Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342: 1493.PubMedCrossRefGoogle Scholar
  11. 11.
    Gennari FJ. Hypokalemia. N Engl J Med. 1998;339:451.PubMedCrossRefGoogle Scholar
  12. 12.
    Clausen T, Everts ME. Regulation of the Na, K-pump in skeletal muscle. Kidney Int. 1989;35:1.PubMedCrossRefGoogle Scholar
  13. 13.
    Montague BT, Ouellette JR, Buller GK. Retrospective review of the frequency of ECG changes in hyperkalemia. Clin J Am Soc Nephrol. 2008;3:324.PubMedCrossRefGoogle Scholar
  14. 14.
    Berne RM, Levy MN. Cardiovascular Physiology. 4th ed. St. Louis: Mosby; 1981:7-17.Google Scholar
  15. 15.
    Blumberg A, Weidmann P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85:507.PubMedCrossRefGoogle Scholar
  16. 16.
    Jacobs TP, Bilezikian JP. Clinical review: rare causes of hypercalcemia. J Clin Endocrinol Metab. 2005;90:6316.PubMedCrossRefGoogle Scholar
  17. 17.
    Heath DA. Primary hyperparathyroidism: clinical presentation and factors influencing clinical management. Endocrinol Metab Clin North Am. 1989;18:631.PubMedGoogle Scholar
  18. 18.
    Bilezikian JP. Drug therapy: management of acute hypercalcemia. N Engl J Med. 1992;326:1196.PubMedCrossRefGoogle Scholar
  19. 19.
    Goltzman D, Cole DEC. Hypoparathyroidism. In: Favus MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Bone Metabolism. 6th ed. Durham, NC: American Society of Bone and Mineral Research; 2006:216.Google Scholar
  20. 20.
    Ryzen E. Magnesium homeostasis in critically ill patients. Magnesium. 1989;8:201.PubMedGoogle Scholar
  21. 21.
    Chernow B, Bamberger S, Stoiko M, et al. Hypomagnesemia in patients in postoperative intensive care. Chest. 1989;95:391.PubMedCrossRefGoogle Scholar
  22. 22.
    Randall RE, Cohen MD, Spray CC. Hypermagnesemia in renal failure: etiology and toxic manifestations. Ann Intern Med. 1964;61:73.PubMedGoogle Scholar
  23. 23.
    Gaasbeek A, Meinders AE. Hypophosphatemia: an update on its etiology and treatment. Am J Med. 2005;118:1094.PubMedCrossRefGoogle Scholar
  24. 24.
    Delmez JA, Slatopolsky E. Hyperphosphatemia: its consequences and treatment in chronic renal failure. Am J Kidney Dis. 1992;19:303.PubMedGoogle Scholar
  25. 25.
    Rose BD. Clinical Physiology of Acid–Base and Electrolyte Disorders. 4th ed. New York: McGraw-Hill; 1994.Google Scholar
  26. 26.
    Greenspan FS. Basic and Clinical Endocrinology. 3rd ed. East Norwalk, CT: Appleton & Lange; 1991.Google Scholar

Additional Reading

  1. Halperin ML, Goldstein MB. Fluid, Electrolyte, and Acid–Base Physiology: A Problem Based Approach. 3rd ed. Philadelphia: Lippincott Willians & Wilkins; 1999.Google Scholar
  2. Schrier RW. Renal and Electrolyte Disorders. 6th ed. Philadelphia: Little, Brown; 2003.Google Scholar
  3. Rose BD. Clinical Physiology of Acid–Base and Electrolyte Disorders. 5th ed. New York: McGraw-Hill; 2000.Google Scholar
  4. Shapiro BA, Harrison RH, Walton JR. Clinical Application of Blood Gases. 3rd ed. Chicago: Year Book; 1982.Google Scholar
  5. Surawicz B. Relationship between electrocardiogram and electrolytes. Am Heart J. 1967;73:814-834.PubMedCrossRefGoogle Scholar
  6. Zeffren JL et al. Reversible defect in renal concentrating mechanism in patients with hypercalcemia. Am J Med. 1962;33:54-63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jesse Goldman
    • 1
  • Gautam S. Choure
    • 2
  1. 1.Department of Medicine, Section of NephrologyTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of NephrologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations