When Manufacturing Capability Exceeds Control Capability: The Paradox of High Precision Products, or is it Possible to Assemble Functional Products out of Components we are Unable to Measure?

  • S. Koelemeijer Chollet
  • M. Braun
  • F. Bourgeois
  • J. Jacot
  • F. Chautems
Part of the IFIP — International Federation for Information Processing book series (IFIPAICT, volume 260)


Sorting and mating is a very common practice in high precision manufacturing, as well in the watch industry, biomedical or automotive industry. This strategy helps to increase the assembly yield, but is costly and timeconsuming. The question is, when is it necessary to apply sorting and mating, and when can it by avoided without loss in product quality? We furthermore show in this paper that the measurement precision is often lower than that of manufacturing. New and more precise manufacturing equipment and assembly devices allow for narrower distributions, and this raises many questions: is it possible to stop sorting? how can we be sure of the quality of the components and of the products? A case study at the company MPS AG, manufacturer of miniature ball bearings, illustrates this trend. We propose another manufacturing and assembly strategies, and show what the conditions are that are necessary to permit this approach.


Ball Bearing IEEE International Symposium Assembly Strategy Selective Assembly Tolerance Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Bourgeois, Y. L. de Meneses, J. Jacot, “Routes & Déroutes — Sur les traces d’un jeune ingénieur qui se lance dans la microtechnique”, Revue Polytechnique, Novembre 2005Google Scholar
  2. 2.
    W. L. Pearn and P. C. Lin, “Measuring process yield based on the capability index Cpm,” International Journal of Advanced Manufacturing Technology, No. 24, pp: 503–508, 2004Google Scholar
  3. 3.
    F. Bourgeois, Vers la maîtrise de la qualité des assemblages de précision, Thèse, EPFL, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2007Google Scholar
  4. 4.
    F. Bourgeois, Y. L. de Meneses, S. Koelemeijer Chollet, J. Jacot, “How much can sorting improve the capability in assembly tasks?”, IEEE International Symposium on Assembly and Task Planning (ISATP03), Besançon, July 2003Google Scholar
  5. 5.
    F. Bourgeois, Y. L. de Meneses, S. Koelemeijer Chollet, J. Jacot, “De l’utilisation du tri pour augmenter le rendement d’un procédé d’assemblage”, Journée d’étude de la Société Suisse de Chronométrie (SSC03), Bienne, Septembre 2003Google Scholar
  6. 6.
    Sm. Kannan, and V. Jayabalan, “A new grouping method to minimize surplus parts in selective assembly for complex assemblies,” International Journal of Production Research, vol. 39, no. 9, 1851–1863, 2001CrossRefGoogle Scholar
  7. 7.
    Sm. Kannan, A. Asha, A., and V. Jayabalan, “A New Method in Selective Assembly to Minimize Clearance Variation for a Radial Assembly Using Genetic Algorithm,” Quality Engineering, Vol. 17, pp: 595–607, 2005CrossRefGoogle Scholar
  8. 8.
    H. M. Kwon, K. J. Kim, and M. J. Chandra, “An Economic Selective Assembly Procedure for Two Mating Components with Equal Variance,” Naval Research Logistics, 46: 809–821, 1999MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. A. Pugh, “Selective Assembly with Components of Dissimilar Variance,” Computers and Industrial Engineering, Vol. 23, No. 1–4, pp: 487–491, 1992CrossRefGoogle Scholar
  10. 10.
    Y. Fu, « Tolerance Analysis for Ball Bearing Assembly », Internal report, EPFL, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2007Google Scholar
  11. 11.
    M. Braun, “Optimization of the production process for high-precision ball-bearings”, Internal report, EPFL, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2007Google Scholar
  12. 12.
    R. S Srinivasan, K. L. Wood, and D. A. McAdams, “Functional Tolerancing: A Design for Manufacturing Methodology,” Research in Engineering Design, Vol. 2, pp. 99–115, 1996CrossRefGoogle Scholar
  13. 13.
    F. Bourgeois, J. Jacot, “Comprendre le chassage à l’échelle horlogère”, Congrès International de Chronométrie (CIC04), Montreux, Septembre 2004Google Scholar
  14. 14.
    F. Bourgeois, L. Charvier, J. Jacot, G. Genolet, H. Lorenz, “La maîtrise du procédé de chassage dans le domaine submillimétrique”, Congrès International de Chronométrie (CIC07), Colombier, Septembre 2007Google Scholar
  15. 15.
    J. Gfeller, F. Bourgeois, S. Koelemeijer Chollet, J. Jacot, “La mesure fonctionnelle: un pas décisif vers la maîtrise de la qualité”, Bulletin de la Société Suisse de Chronométrie, Switzerland, Avril 2007Google Scholar
  16. 16.
    F. Bourgeois, Y. L. de Meneses, S. Koelemeijer Chollet, P-A. Adragna, M. Pillet, J. Jacot, “Tolerancing strategy for microsystem assembly”, submitted to Precision Engineering the 5th of July 2006Google Scholar
  17. 17.
    J. Gfeller, S. Koelemeijer Chollet, F. Bourgeois, J. Jacot, “Functional tolerancing and testing increase microassembly yield”, IEEE International Symposium on Assembly and Manufacturing (ISAM07), Michigan, July 2007Google Scholar
  18. 18.
    F. Bourgeois, Y. L. de Meneses, S. Koelemeijer Chollet, J. Jacot, “Defining assembly specifications from product functional requirements using inertial tolerancing in precision assembly”, IEEE International Symposium on Assembly and Task Planning (ISATP05), Montreal, July 2005Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • S. Koelemeijer Chollet
    • 1
    • 2
  • M. Braun
    • 1
    • 2
  • F. Bourgeois
    • 1
    • 2
  • J. Jacot
    • 1
    • 2
  • F. Chautems
    • 3
  1. 1.Laboratoire de Production Microtechnique, Institut de Production et RobotiqueEcole Polytechnique Fédérale de LausanneSwitzerland
  2. 2.Laboratoire de Production Microtechnique EPFLLausanneSwitzerland
  3. 3.MPS AGBonfolSwitzerland

Personalised recommendations