Advertisement

Assembly of Osseous Fragments in Orthopaedic Surgery: The Need for New Standards of Evaluation

  • Olivier Cartiaux
  • Laurent Paul
  • Pierre-Louis Docquier
  • Xavier Banse
  • Benoit Raucent
Part of the IFIP — International Federation for Information Processing book series (IFIPAICT, volume 260)

Abstract

In orthopaedic surgery, intra-operative bone machining and assembly of osseous fragments are two very important research areas. One of the most challenging applications is the treatment of malignant osseous tumors within the pelvis due to its complex tri-dimensional geometry. The conventional surgical procedure includes tumoral resection (cutting of the osseous tumor) and reconstruction by allograft (assembly of fragments). Accuracy of bone cutting and osseous assembly has not yet been documented. This paper presents an experimental study on plastic bones, with experienced surgeons working under ideal conditions. The goal was to assess the accuracy by using geometrical parameters resulting from the surgical usual language: surgical margin for tumor cuttings, and maximal gap, gap volume and mean gap between the 2 osseous fragments. Both mean values and correlation between assembly parameters were relatively poor. Experienced surgeons did not manage to consistently perform accurate cuttings and osseous assemblies, even under ideal working conditions. The complex tri-dimensional architecture of the pelvis can mainly explain this inaccuracy. There is a need to adapt computer and robotic assisted technologies for tumor cuttings and osseous assemblies. Finally, our attempt to evaluate accuracy using simple geometrical parameters, was not satisfactory. There is a need to define new evaluation standards for these assemblies. We think that mechanical engineering tools like geometrical tolerances and mechanical fittings are more suitable for this problem of quality evaluation.

Keywords

Orthopaedic Surgery Pelvic Osteotomy Geometrical Tolerance Tumor Cutting Pelvic Ring Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Donati, A. El Ghoneimy, F. Bertoni, C. Di Bella and M. Mercuri, Surgical treatment and outcome of conventional pelvic chondrosarcoma, J Bone Joint Surg (Br) 87, 1527–1530 (2005).Google Scholar
  2. 2.
    N. Kawaguchi, S. Matumoto and J. Manabe, New method of evaluating the surgical margin and safety margin for musculoskeletal sarcoma, analysed on the basis of 457 surgical cases, J Cancer Res Clin Oncol 121, 555–563 (1995).CrossRefGoogle Scholar
  3. 3.
    M.E. Pring, K.L. Weber, K. Unni and F.H. Sim, Chondrosarcoma of the pelvis: A review of sixty-four cases, J Bone Joint Surg (Am) 83, 1630–1642 (2001).Google Scholar
  4. 4.
    K.L. Weber, M.E. Pring and F.H. Sim, Treatment and outcome of recurrent pelvic chondrosarcoma, Clin Orthop 397, 19–28 (2002).CrossRefGoogle Scholar
  5. 5.
    W.F. Enneking, S.S. Spanier and M.A. Goodman, Current concepts review. The surgical staging of musculoskeletal sarcoma, J Bone Joint Surg (Am) 62, 1027–1030 (1980).Google Scholar
  6. 6.
    C. Delloye, X. Banse, B. Brichard, PL. Docquier and O. Cornu, Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor, J Bone Joint Surg (Am) 89, 5795–5787 (2007).CrossRefGoogle Scholar
  7. 7.
    R.S. Bell, A.M. Davis, J.S. Wunder, T. Buconjic, B. McGoveran and A.E. Gross, Allograft reconstruction of the acetabulum after resection of stage-IIB sarcoma. Intermediate-term results, J Bone Joint Surg (Am) 79, 1663–1674 (1997).Google Scholar
  8. 8.
    N. Dion and F.H. Sim, The use of allografts in orthopaedic surgery. Part I: The use of allografts in musculoskeletal oncology, J Bone Joint Surg (Am) 84, 644–654 (2002).Google Scholar
  9. 9.
    G.E. Friedlaender, D.M. Strong, W.W. Tomford and H.J. Mankin, Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome, Orthop Clin North Am 30, 583–588 (1999).CrossRefGoogle Scholar
  10. 10.
    A. Hillman, C. Hoffman, G. Gosheger, R. Rödl, W. Winkelmann and T. Ozaki, Tumor of the pelvis: complications after reconstruction, Acta Orthop Trauma Surg 123, 340–344 (2003).CrossRefGoogle Scholar
  11. 11.
    F.J. Hornicek, M.C. Gebhardt, W.W. Tomford, J.I. Sorger, M. Zavatta, J.P. Menzner and H.J. Mankin, Factors affecting nonunion of the allograft-host junction, Clin Orthop Relat Res 382, 87–98 (2001).CrossRefGoogle Scholar
  12. 12.
    H.J. Mankin, F.J. Hornicek and K.A. Raskin, Infection in massive bone allografts, Clin Orthop Relat Res 432, 210–216 (2005).CrossRefGoogle Scholar
  13. 13.
    E. Ortiz-Cruz, M.C. Gebhardt, L.C. Jennings, D.S. Springfield and H.J. Mankin, The results of transplantation of intercalary allografts after resection of tumors, J Bone Joint Surg (Am) 79, 97–106(1997).Google Scholar
  14. 14.
    J.L. Sorger, F.J. Hornicek, M. Zavatta, J.P. Menzner, M.C. Gebhardt, W.W. Tomford and H.J. Mankin, Allograft fractures revisited, Clin Orthop 382, 66–74 (2001).CrossRefGoogle Scholar
  15. 15.
    R.C. Thompson Jr., A. Garg, D.R. Clohisy and E.Y. Cheng, Fractures in large-segment allografts, Clin Orthop Relat Res 370, 227–235 (2000).CrossRefGoogle Scholar
  16. 16.
    D.L. Wheeler and W.F. Enneking, Allograft bone decreases in strength in vivo over time, Clin Orthop Relat Res 435, 36–42 (2005).CrossRefGoogle Scholar
  17. 17.
    W.F. Enneking and D.A. Campanacci, Retrieved human allografts. A clinicopathological study, J Bone Joint Surg (Am) 83, 971–986 (2001).Google Scholar
  18. 18.
    W.F. Enneking and W.K. Dunham,Resection and reconstruction for primary neoplasms involving the innominate bone, J Bone Joint Surg (Am) 60, 731–746 (1978).Google Scholar
  19. 19.
    A. Petrie, Stastitics in orthopaedic papers, J Bone Joint Surg (Br) 88, 1121–1136 (2006).Google Scholar
  20. 20.
    J.R. Landis and G.G. Koch, The measurement of observer agreement for categorical data, Biometrics 33, 159–174 (1977).CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    T. Hüfner, M. Kfuri Jr., M. Galanski, L. Bastian, M. Loss, T. Pohlemann and C. Krettek, New indications for computer-assisted surgery: tumor resection in the pelvis, Clin Orthop Relat Res 426, 219–225(2004).CrossRefGoogle Scholar
  22. 22.
    C. Krettek, J. Geerling, L. Bastian, M. Citak, F. Rucker, D. Kendoff and T. Hüfner, Computer aided tumor resection in the pelvis, Injury 35, 79–83 (2004).CrossRefGoogle Scholar
  23. 23.
    E. Gautier, R. Bachler, P.F. Heini and L.P. Nolte, Accuracy of computer-guided screw fixation of the sacroiliac joint, Clin Orthop Relat Res 393, 310–317 (2001).CrossRefGoogle Scholar
  24. 24.
    F. Langlotz, R. Bächler, U. Berlemann, L.P. Nolte and R. Ganz, Computer assistance for pelvic osteotomies, Clin Orthop Relat Res 354, 92–102 (1998).CrossRefGoogle Scholar
  25. 25.
    G. van Hellemondt, M. de Kleuver, A. Kerckhaert, P. Anderson, F. Langlotz, L.P. Nolte and P. Pavlov, Computer-assisted pelvic surgery: an in vitro study of two registration protocols, Clin Orthop Relat Res 405, 287–293 (2002).CrossRefGoogle Scholar
  26. 26.
    T. Hüfner, T. Pohlemann, S. Tarte, A. Gänssien, M. Citak, N. Bazak, U. Culemann, L.P. Nolte and C. Krettek, Computer-assisted fracture reduction: novel method for analysis of accuracy, Comput Aided Surg 6, 153–159 (2001).CrossRefGoogle Scholar
  27. 27.
    T. Hüfner, T. Pohlemann, S. Tarte, A. Gänssien, J. Geerling, N. Bazak, M. Citak, L.P. Nolte and C. Krettek, Computer-assisted fracture reduction of pelvic ring fractures: an in vitro study, Clin Orthop Relat Res 399, 231–239 (2002).CrossRefGoogle Scholar
  28. 28.
    PA. Adragna, S. Samper, H. Favrelière, Tolérancement modal — un langage de spécification, 2nde journée européenne du tolérancement, Annecy (June 20, 2006).Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • Olivier Cartiaux
    • 1
  • Laurent Paul
    • 2
  • Pierre-Louis Docquier
    • 2
  • Xavier Banse
    • 2
  • Benoit Raucent
    • 1
  1. 1.Department of Mechanical EngineeringUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Orthopaedic Surgery, Cliniques universitaires St-LucUniversité catholique de LouvainBrusselsBelgium

Personalised recommendations