Advertisement

Fluidassem - A New Method of Fluidic-Based Assembly with Surface Tension

  • N. Boufercha
  • J. Sägebarth
  • M. Burgard
  • N. Othman
  • D. Schlenker
  • W. Schäfer
  • H. Sandmaier
Part of the IFIP — International Federation for Information Processing book series (IFIPAICT, volume 260)

Abstract

Regarding electronic components the reduction of costs will be a challenging goal in the next few years. The use of polymer electronics will not help to minimise this problem. Cheap products made of silicon are here to stay for a while.

Keywords

Surface Tension Contact Angle Assembly Process Final Position Challenging Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Sandmaier, R. Zengerle, B. de Heij, C. Steinert. A Tunable and Highly-Parallel Picoliter-Dispenser Based on Direct Liquid Displacement. In MEMS 2002, Las Vegas, USA, 2002.Google Scholar
  2. 2.
    J. Berthier and P. Silberzahn. Microfluidics for Biotechnology. Artech House, 2006.Google Scholar
  3. 3.
    J. Fang and K. F. Böhringer. High yield batch packaging of Micro Devices with uniquely orienting Self-Assembly. In IEEE International Electronic Devices Meeting, 2005.Google Scholar
  4. 4.
    M. Fietz. Numerische Simulation von Oberflächeninstabilitäten in Zweiphasenströmungen mit Hilfe einer Level-Set Methode. PhD thesis, RWTH Aachen, 2003.Google Scholar
  5. 5.
    T. Franke and A. Wixforth. Das Labor auf dem Chip. Physik unserer Zeit, 38:88–94, 2007.CrossRefGoogle Scholar
  6. 6.
    G. Engelmann, H. Reichl, M. Hutter, H. Oppermann. High Precision Passive Alignment Flip Chip Assembly Using Self-alignment and Micro-mechanical Stops. In Electronics Packaging technology Conference, 2004.Google Scholar
  7. 7.
    F. Mugele. Liquids in Contact with Solids: Nanotribology and Micro-fluidics. PhD thesis, Universität Ulm — Abteilung Angewandte Physik, 2004.Google Scholar
  8. 8.
    C. P. Steinert, H. Sandmaier, S. Messner, B. de Heij, M. Daup, R. Zengerle, O. Gutmann, R. Niekrawietz. Droplet Release in a Highly Parallel Pressure Driven Nanoliter Dispenser. In Transducers’ 03, Boston, 2003Google Scholar
  9. 9.
    S. Pal, D. Roccatano, H. Weiss, H. Keller and F. Müller-Plathe. Molecular Dynamics Simulation of water near nanostructured hydrophobic surfaces: interfacial energies. ChemPhysChem, 6:1641–1649, 2005CrossRefGoogle Scholar
  10. 10.
    J. S. Smith. High density, low parasitic direct integration by Fluidic Self Assembly (FSA). In IEEE International Electronic Devices Meeting, 2000.Google Scholar
  11. 11.
    A. Torkkeli. Droplet microfluidic on a planar surface. PhD thesis, VTT Publications 504, 2003.Google Scholar
  12. 12.
    E. Truckenbrodt. Fluidmechanik, Band I, Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide, 4. Auflage. Springer-Verlag, Berlin, 1996.Google Scholar
  13. 13.
    F. Exl und J. Kindersberger. Messung von Tropfenrandwinkeln auf Isolierstoffoberflächen. In ETG-Fachbericht 97, VDE-Verlag GmbH Berlin Offenbach, S. 67–72, 2004.Google Scholar
  14. 14.
    L. Zhu, Y. Feng, X. Ye and Z. Zhou. Tuning wettability and getting superhydrophobic surfaces by controlling surface roughness with well-designed microstructures. Sensors and Actuators, A 130–131:595–600, 2006.Google Scholar
  15. 15.
    W. B. J. Zimmerman. Multiphysics Modelling with finite Element Methods. World Scientific Publishing Co.Pte.Ltd., 2006.Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • N. Boufercha
    • 1
  • J. Sägebarth
    • 1
  • M. Burgard
    • 1
  • N. Othman
    • 2
  • D. Schlenker
    • 2
  • W. Schäfer
    • 2
  • H. Sandmaier
    • 1
  1. 1.Universität Stuttgart, IFF / MSTStuttgartGermany
  2. 2.Fraunhofer, IPAStuttgartGermany

Personalised recommendations