Advertisement

Roles of Platelet-Activating Factor in Brain

Platelet-activating factor (PAF) is a bioactive phospholipid that activates a number of cells including neural cells (neurons, astrocytes, oligodendrocytes, and microglia), platelets, leukocytes, monocytes, macrophages, endothelial cells, and smooth muscle cells (Aihara et al., 2000) (Montrucchio et al., 2000). A variety of stimuli, including those producing inflammation, promote the synthesis and release of PAF from neural and nonneural cells. As PAF interacts with many types of nonneural cells, it mediates processes as diverse as wound healing, physiological inflammation, angiogenesis, apoptosis, and reproduction (Montrucchio et al., 2000). Physiological concentrations (1–100 nM) of PAF promote differentiation in developing neurons and increase the strength of synaptic transmission in the mature brain. Higher concentrations of PAF (μM) that occur in pathological conditions such as head and spinal cord trauma and ischemia trigger neuronal cell death (Bazan et al., 1997; Kornecki et al., 1996). In brain tissue, PAF may be associated with neural cell migration, gene expression, calcium mobilization, noniception, and long-term potentiation (Fig. 9.1). PAF interacts with neural and nonneural cells by binding to specific receptors called as PAF receptors (PAF-Rs). These receptors have been cloned and characterized from nonneural tissues (Honda et al., 1991). Like G protein-coupled receptors, PAF-Rs possess seven transmembrane helices and signals through several G proteins such as Gαo, Gαi, Gβγ, and Gαq. PAF-Rs are associated with multiple intracellular signaling pathways (Honda et al., 1991; Clark et al., 2000).

In the cardiovascular system, PAF plays a role in embryogenesis because it regulates endothelial cell migration and angiogenesis, and may modulate cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes (Montrucchio et al., 2000). Moreover, PAF may contribute to the modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes (Montrucchio et al., 2000).

Keywords

Tactile Allodynia Collective Evidence Granule Cell Migration Nonneural Cell Postsynaptic NMDA Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi T., Aoki J., Manya H., Asai H., Arai H. and Inoue K. (1997). PAF analogues capable of inhibiting PAF acetylhydrolase activity suppress migration of isolated rat cerebellar granule cells. Neurosci. Lett. 235:133–136.PubMedCrossRefGoogle Scholar
  2. Aihara M., Ishii S., Kume K., and Shimizu T. (2000). Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells 5:397–406.PubMedCrossRefGoogle Scholar
  3. Bazan N. G., Squinto S. P., Braquet P., Panetta T., and Marcheselli V. L. (1991). Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: Intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional signaling system. Lipids 26:1236–1242.PubMedCrossRefGoogle Scholar
  4. Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91:5252–5256.PubMedCrossRefGoogle Scholar
  5. Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.PubMedCrossRefGoogle Scholar
  6. Bennett S.A., Chen J., Pappas B.A., Roberts D.C., and Tenniswood M. (1998). Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Cell Death Differ. 5: 867–875.PubMedCrossRefGoogle Scholar
  7. Bito H., Nakamura M., Honda Z., Izumi T., Iwatsubo T., Seyama Y., Ogura A., Kudo Y., and Shimizu T. (1992). Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 9:285–294.PubMedCrossRefGoogle Scholar
  8. Brewer, C., Bonin, F., Bullock, P., Nault, M.C., Morin, J., Imbeault, S., Shen, T.Y., Franks, D.J., and Bennet, S.A. (2002). Platelet activating factor-induced apoptosis is inhibited by ectopic expression of the platelet activating factor G-protein coupled receptor. J. Neurochem. 82:1502–1511.PubMedCrossRefGoogle Scholar
  9. Brodie C. (1995). Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci. Lett. 186:5–8.PubMedCrossRefGoogle Scholar
  10. Catalán R. E., Martínez A. M., Aragonés M. D., Garde E., and Díaz G. (1993). Platelet-activating factor stimulates protein kinase C translocation in cerebral microvessels. Biochem. Biophys. Res. Commun. 192:446–451.PubMedCrossRefGoogle Scholar
  11. Chao W. and Olson M. S. (1993). Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292:617–629.PubMedGoogle Scholar
  12. Clark, G.D., Zorumski, C.F., McNeil, R.S., Happel, L.T., Ovella, T., McGuire, S., Bix, G.J., and Swann, J.W. (2000). Neuronal platelet-activating factor receptor signal transduction involves a pertussis toxin-sensitive G-protein. Neurochem. Res. 25:603–611.PubMedCrossRefGoogle Scholar
  13. Cruzado J.M., Torras J., Riera M., Lloberas N., Herrero I., Condom E., Martorell J., Alsina J., and Grinyo J.M. (1998). Effect of a platelet-activating factor (PAF) receptor antagonist on hyperacute xenograft rejection; Evaluation in a pig kidney-human blood xenoperfusion model. Clin. Exp. Immunol. 113:136–144.PubMedCrossRefGoogle Scholar
  14. DeCoster M. A., Mukherjee P. K., Davis R. J., and Bazan N. G. (1998). Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J. Neurosci. Res. 53:297–303.PubMedCrossRefGoogle Scholar
  15. del Zoppo G.J. and Mabuchi T. (2003). Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab. 23:879–894.PubMedCrossRefGoogle Scholar
  16. Faden A. I. and Halt P. (1992). Platelet-activating factor reduces spinal cord blood flow and causes behavioral deficits after intrathecal administration in rats through a specific receptor mechanism. J. Pharmacol. Exp. Ther. 261:1064–1070.PubMedGoogle Scholar
  17. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedCrossRefGoogle Scholar
  18. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.PubMedCrossRefGoogle Scholar
  19. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: A matter of fat. J. Neurochem. 101:577–599.PubMedCrossRefGoogle Scholar
  20. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedCrossRefGoogle Scholar
  21. Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharmaceut. Design. 10: 915–921.CrossRefGoogle Scholar
  22. Han X.B., Liu X., Hsueh W., De Plaen I.G. (2004) Macrophage inflammatory protein-2 mediates the bowel injury induced by platelet-activating factor. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1220–1226.PubMedCrossRefGoogle Scholar
  23. Harris E.W. and Cotman C.W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci. Lett. 70:132–137.PubMedCrossRefGoogle Scholar
  24. Honda Z., Nakamura M., Miki I., Minami M., Watanabe T., Shimizu T. (1991). Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349:342–346.PubMedCrossRefGoogle Scholar
  25. Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.PubMedGoogle Scholar
  26. Hosford D. J., Domingo M. T., Chabrier P. E., and Braquet P. (1990). Ginkgolides and platelet-activating factor binding sites. Method Enzymol. 187:433–446.CrossRefGoogle Scholar
  27. Hostettler M. E. and Carlson S. L. (2002). PAF antagonist treatment reduces pro-inflammatory cytokine mRNA after spinal cord injury. NeuroReport. 13:21–24.PubMedCrossRefGoogle Scholar
  28. Ishii S., Matsuda Y., Nakamura M., Waga I., Kume K., Izumi T., and Shimizu T. (1996). A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages. Biochem. J. 314:671–678.PubMedGoogle Scholar
  29. Ishii S. and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.PubMedCrossRefGoogle Scholar
  30. Izumi T. and Shimizu T. (1995). Platelet-activating factor receptor: Gene expression and signal transduction. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:317–333.CrossRefGoogle Scholar
  31. Izquierdo I., Fin C., Schmitz P.K., Da Silva R.C., Jerusalinsky D., Quillfeldt J.A., Ferreira M.B., Medina J.H. and Bazan N.G. (1995). Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task. Proc Natl Acad Sci USA. 92:5047–5051.PubMedCrossRefGoogle Scholar
  32. Junier M.P., Tiberghien C., Rougeot C., Fafeur V., and Dray F. (1988). Inhibitory effect of platelet-activating factor (PAF) on luteinizing hormone-releasing hormone and somatostatin release from rat median eminence in vitro correlated with the characterization of specific PAF receptor sites in rat hypothalamus. Endocrinology. 123:72–80.PubMedCrossRefGoogle Scholar
  33. Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.PubMedCrossRefGoogle Scholar
  34. Ko H.M., Seo K.H., Han S.J., Ahn K.Y., Choi I.H., Koh G.Y., Lee H.K., Ra M.S., and Im S.Y. (2002). Nuclear factor kappaB dependency of platelet-activating factor-induced angiogenesis. Cancer Res. 62:1809–1814.PubMedGoogle Scholar
  35. Ko H.M., Park Y.M., Jung B., Kim H.A., Choi J.H., Park S.J., Lee H.K., and Im S.Y. (2005). Involvement of matrix metalloproteinase-9 in platelet-activating factor-induced angiogenesis. FEBS Lett. 679:2369–2375.CrossRefGoogle Scholar
  36. Ko H., Jung H.H., Seo K.H., Kang Y.R., Seo K.H., Kang Y.R., Kim H.A., Park S.J., Lee H.K., and Im S.Y. (2006). Platelet-activating factor-induced NF-kappaB activation enhances VEGF expression through a decrease in p53 activity. FEBS Lett. 580:3006–3012.PubMedCrossRefGoogle Scholar
  37. Kochanek P. M., Melick J. A., Schoettle R. J., Magargee M. J., Evans R. W., and Nemoto E. M. (1990). Endogenous platelet activating factor does not modulate blood flow and metabolism in normal rat brain. Stroke. 21:459–462.PubMedGoogle Scholar
  38. Kochanek P. M., Nemoto E. M., Melick J. A., Evans R. W., and Burke D. F. (1988). Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J. Cereb. Blood Flow Metab. 8:546–551.PubMedGoogle Scholar
  39. Kornecki E. and Ehrlich Y. H. (1988). Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794.PubMedCrossRefGoogle Scholar
  40. Kornecki E. and Ehrlich Y. H. (1991). Calcium ion mobilization in neuronal cells induced by PAF. Lipids 26:1243–1246.PubMedCrossRefGoogle Scholar
  41. Kornecki E., Wieraszko A., Chan J. C., and Ehrlich Y. H. (1996). Platelet activating factor (PAF) in memory formation: Role as a retrograde messenger in long-term potentiation. J. Lipid Mediat. Cell Signal. 14:115–126.PubMedCrossRefGoogle Scholar
  42. Kuijpers T. W., Van den Berg J. M., Tool A. T. J., and Roos D. (2001). The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: Anti-inflammatory effects of human PAF-acetylhydrolase. Clin. Exp. Immunol. 123:412–420.PubMedCrossRefGoogle Scholar
  43. Kunievsky B., Bazan N. G., and Yavin E. (1992). Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemic fetal brain. J. Neurochem. 59:1812–1819.PubMedCrossRefGoogle Scholar
  44. Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.PubMedCrossRefGoogle Scholar
  45. Lo Nigro C., Chong S.S., Smith A.C.M., Dobyns W.B., Carrozzo R., and Ledbetter D.H. (1997). Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum. Mol. Genet. 6:157–164.PubMedCrossRefGoogle Scholar
  46. Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.PubMedCrossRefGoogle Scholar
  47. Marcheselli V. L. and Bazan N. G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation of c-fos and zif-268 in hippocampus. J. Neurosci. Res. 37:54–61.PubMedCrossRefGoogle Scholar
  48. Marcheselli V. L., Rossowska M. J., Domingo M. T., Braquet P., and Bazan N. G. (1990). Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265:9140–9145.PubMedGoogle Scholar
  49. Melnikova V. O., Mourad-Zeidan A. A., Lev D. C., and Bar-Eli M. (2006). Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem. 281:2911–2922.PubMedCrossRefGoogle Scholar
  50. Miller B., Sarantis M., Traynelis S. F., and Attwell D. (1992). Potentiation of NMDA receptor currents by arachidonic acid. Nature 355:722–725.PubMedCrossRefGoogle Scholar
  51. Montrucchio G., Alloatti G., and Camussi G. (2000). Role of platelet-activating factor in cardiovascular pathophysiology.Physiol. Rev. 80:1669–1699.PubMedGoogle Scholar
  52. Moqbel R., Walsh G. M., Nagakura T., MacDonald A. J., Wardlaw A. J., Iikura Y., Kay A. B. (1990). The effect of platelet-activating factor on IgE binding to, and IgE-dependent biological properties of, human eosinophils. Immunology. 70:251–257.PubMedGoogle Scholar
  53. Mori M., Aihara M., Kume K., Hamanoue M., Kohsaka S., and Shimizu T. (1996). Localization of platelet-activating factor receptor in the rat brain. Adv. Exp. Med. Biol. 407:357–363:357–363.Google Scholar
  54. Morita K., Suemitsu T., Uchiyama Y., Miyasako T., and Dohi T. (1995). Platelet-activating factor mediated potentiation of stimulation- evoked catecholamine release and the rise in intracellular free Ca2+ concentration in adrenal chromaffin cells. J. Lipid Mediat. Cell Signal. 11:219–230.PubMedCrossRefGoogle Scholar
  55. Morita K., Morioka W., Abdin J., Kitayama S., Nakata Y., and Dohi T. (2004). Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain 111:351–359.PubMedCrossRefGoogle Scholar
  56. Nogami K., Hirashima Y., Endo S., and Takaku A. (1997). Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures. Brain Res. 754:72–78.PubMedCrossRefGoogle Scholar
  57. Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.PubMedCrossRefGoogle Scholar
  58. Ottino P., He J., Axelrod T. W., Bazan H. E. (2005). PAF-induced furin and MT1-MMP expression is independent of MMP-2 activation in corneal myofibroblasts. Invest. Ophthalmol. Vis. Sci. 46:487–496.PubMedCrossRefGoogle Scholar
  59. Packard M. G., Teather L. A., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66:176–182.PubMedCrossRefGoogle Scholar
  60. Pan Z., Kravchenko V. V., Ye R. D. (1995). Platelet-activating factor stimulates transcription of the heparin-binding epidermal growth factor-like growth factor in monocytes. Correlation with an increased kappa B binding activity. J Biol Chem. 270:7787–7790.PubMedCrossRefGoogle Scholar
  61. Panwala C. M., Jones J. C., and Viney J. L. (1998). A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161:5733–5744.PubMedGoogle Scholar
  62. Pettorossi V. E., and Grassi S. (2001). Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei. Acta Otolaryngol Suppl. 545:160–165.PubMedCrossRefGoogle Scholar
  63. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedCrossRefGoogle Scholar
  64. Prescott S. M., McIntyre T. M., Zimmerman G. A., and Stafforini D. M. (2002). Sol Sherry lecture in thrombosis – Molecular events in acute inflammation. Arterioscler. Thromb. Vasc. Biol. 22:727–733.PubMedCrossRefGoogle Scholar
  65. Qu X. W., Wang H., Rozenfeld R. A., Huang W., and Hsueh W. (1999). Type I nitric oxide synthase (NOS) is the predominant NOS in rat small intestine. Regulation by platelet-activating factor. Biochim. Biophys. Acta. 1451:211–217.PubMedCrossRefGoogle Scholar
  66. Raggers R. J., Vogels I., and Van Meer G. (2001). Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem. J. 357:859–865.PubMedCrossRefGoogle Scholar
  67. Reiner O., Carrozzo R., Shen Y., Wehnert M., Faustinella F., Dobyns W. B., Caskey C. T., and Ledbetter D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721.PubMedCrossRefGoogle Scholar
  68. Snyder F. (1995). Platelet-activating factor: The biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.PubMedGoogle Scholar
  69. Squinto S. P., Block A. L., Braquet P., and Bazan N. G. (1989). Platelet-activating factor stimulates a fos/jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J. Neurosci. Res. 24:558–566.PubMedCrossRefGoogle Scholar
  70. Svensson C. I. and Yaksh T. L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42:553–583.PubMedCrossRefGoogle Scholar
  71. Taheri F. and Bazan H. E. (2007). Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 48:1931–1941.PubMedCrossRefGoogle Scholar
  72. Teather L. A., Afonso V. M., and Wurtman R. J. (2006). Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res. 1097:230–233.PubMedCrossRefGoogle Scholar
  73. Teather L. A., Magnusson J. E., Chow C. M., and Wurtman R. J. (2002). Environmental conditions influence hippocampus-dependent behaviours and brain levels of amyloid precursor protein in rats. Eur. J. Neurosci. 16:2405–2415.PubMedCrossRefGoogle Scholar
  74. Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18:563–570.PubMedCrossRefGoogle Scholar
  75. Tsuda M., Ishii S., Masuda T., Hasegawa S., Nakamura K., Nagata K., Yamashita T., Furue H., Tozaki-Saitoh H., Yoshimura M., Koizumi S., Shimizu T., and Inoue K. (2007a). Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem. 102:1658–1668.PubMedCrossRefGoogle Scholar
  76. Tsuda M., Hasegawa S., and Inoue K. (2007b). P2X receptors-mediated cytosolic phospholipase A(2) activation in primary afferent sensory neurons contributes to neuropathic pain. J Neurochem.103:1408–1416PubMedCrossRefGoogle Scholar
  77. Vahidy W.H., Ong W.Y., Farooqui A.A., and Yeo J.-F. (2006). Pronociceptive effects of central nervous lysophospholipids in a mouse model of orofacial pain. Exp. Brain Res. 174:781–785.PubMedCrossRefGoogle Scholar
  78. Wang J.H., and Sun G.Y. (2000). Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC). Neurochem. Res. 25:613–619.PubMedCrossRefGoogle Scholar
  79. Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature. 341:739–742.PubMedCrossRefGoogle Scholar
  80. Xu Y., Zhang B. S., Hua Z. C., Johns R. A., Bredt D. S., and Tao Y. X. (2004). Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp. Neurol. 189:16–24.PubMedCrossRefGoogle Scholar
  81. Yoshida H., Imaizumi T., Tanji K., Matsumiya T., Sakaki H., Kimura D., Cui X. F., Kumagai M., Tamo W., Shibata T., Hatakeyama M., Sato Y., and Satoh K. (2002). Platelet-activating factor enhances the expression of vascular endothelial growth factor in normal human astrocytes. Brain Res. 944:65–72.PubMedCrossRefGoogle Scholar
  82. Yoshida H., Imaizumi T., Tanji K., Sakaki H., Metoki N., Hatakeyama M., Yamashita K., Ishikawa A., Taima K., Sato Y., Kimura H., and Satoh K. (2005). Platelet-activating factor enhances the expression of nerve growth factor in normal human astrocytes under hypoxia. Mol. Brain Res. 133:95–101.PubMedCrossRefGoogle Scholar
  83. Zhang Q., Seltmann H., Zouboulis C. C., and Travers J. B. (2006). Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production. Exp. Dermatol. 15:769–774.PubMedCrossRefGoogle Scholar
  84. Zimmerman G. A., Elstad M. R., Lorant D. E., McIntyre T. M., Prescott S. M., Topham M. K., Weyrich A. S., and Whatley R. E. (1996). Platelet-activating factor (PAF): Signalling and adhesion in cell–cell interactions. Adv. Exp. Med. Biol. 416:297–304.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations