Skip to main content

Involvement of Plasmalogens in Neurological Disorders

  • Chapter
  • 537 Accesses

Neural membranes are complex, well-organized, and highly specialized structures involved in receiving, processing, transporting, and transmitting information, not only from the plasma membrane to the nucleus, but also from one cell to another through chemical mediators generated during the catabolism of various glycerophospholipids (Guan et al., 1999; Farooqui and Horrocks, 2007). Neural membranes are highly interactive and dynamic. These properties facilitate optimal interactions of lipid mediators with transmembrane proteins, receptors, and ion channels and maintain normal brain function and adaptive responses (Farooqui et al., 1995; Farooqui and Horrocks, 2004). Although very little is known about the regulation of lipid dynamics in neural membranes, this process has been reported to link with the biosynthesis, metabolism, and transport of individual molecular species of glycerophospholipid (Farooqui and Horrocks, 2007). The catabolism of neural membrane glycerophospholipids, including plasmalogens, involves phospholipases, whose activities are modulated by receptors and ion channels. Plasmalogens provide neural membranes with suitable stability, fluidity, and permeability. They serve as storage depot and precursors for eicosanoids, docosanoids, and platelet activating factor.

In neural membranes, the maintenance of lipid asymmetry requires up to 20– 26% consumption of ATP (Purdon et al., 2002; Purdon and Rapoport, 2007). This high rate of ATP consumption includes 1.4% of net brain ATP consumption for de novo synthesis of ether lipids, 5% for recycling of fatty acids within glycerophospholipid, 7.7% for maintaining membrane asymmetries of charged aminophospholipids, and about 12% for maintaining the phosphorylation state and de novo synthesis of inositol containing phospholipids involving phosphatidylinositol signaling (Purdon and Rapoport, 2007). Much of the remaining ATP maintains the distribution and transport of ions and activities of membrane-bound enzymes and ion channels. The high rate of ATP consumption is consistent with the role of glycerophospholipids in neural cell signaling, apoptosis, and membrane-associated processes such as membrane fusion, anchoring, and recycling (Purdon and Rapoport, 2007). At present, no information is available on ATP consumption during traffick- ing and sorting of various glycerophospholipids in neurons, astrocytes, oligodendrocytes, and microglial glial cells. The situation on ATP consumption during glycerophospholipid trafficking and sorting becomes more complex at the subcellular level (endoplasmic reticulum, Golgi apparatus, nucleus, etc.) of various cell types of neural cells in normal brain and brains from patients with neural trauma and neurodegenerative diseases.

Keywords

  • Fetal Alcohol Syndrome
  • Ether Lipid
  • Fatty Aldehyde
  • Zellweger Syndrome
  • Peroxisomal Disorder

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77401-5_6
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-77401-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bams-Mengerink A. M., Majoie C. B., Duran M., Wanders R. J., Van Hove J., Scheurer C. D., Barth P. G., and Poll-The B. T. (2006). MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology 66:798–803.

    PubMed  CAS  Google Scholar 

  • Berry K. A. Z. and Murphy R. C. (2005). Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: Structure determination by mass spectrometry. Antioxidants and Redox Signaling 7:157–169.

    Google Scholar 

  • Bichenkov E. and Ellingson J. S. (1999). Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem. Res. 24:1549–1556.

    PubMed  CAS  Google Scholar 

  • Brosche T., Platt D., and Knopf B. (2002). Decreased concentrations of serum phospholipid plasmalogens indicate oxidative burden of uraemic patients undergoing haemodialysis. Nephron 90:58–63.

    PubMed  CAS  Google Scholar 

  • Brosche T., Brueckmann M., Haase K. K., Sieber C., and Bertsch T. (2007). Decreased plasmalogen concentration as a surrogate marker of oxidative stress in patients presenting with acute coronary syndromes or supraventricular tachycardias. Clin. Chem. Lab. Med. 45:689–691.

    PubMed  CAS  Google Scholar 

  • Burdge G. C. (1998). The role of docosahexaenoic acid in brain development and fetal alcohol syndrome. Biochem. Soc. Trans. 26:246–252.

    PubMed  CAS  Google Scholar 

  • Caldwell R. A. and Baumgarten C. M. (1998). Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ. Res. 83:533–540.

    PubMed  CAS  Google Scholar 

  • Clarren S. K. and Smith D. W. (1978). The fetal alcohol syndrome. N. Engl. J. Med. 298:1063–1067.

    PubMed  CAS  Google Scholar 

  • Cummings B. S., McHowat J., and Schnellmann R. G. (2000). Phospholipase A2s in cell injury and death. J. Pharmacol. Exp. Ther. 294:793–799.

    PubMed  CAS  Google Scholar 

  • Daniel L. W., Sciorra V. A., and Ghosh S. (1999). Phospholipase D, tumor promoters, proliferation and prostaglandins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1439:265–276.

    CAS  Google Scholar 

  • Das A. K., Holmes R. D., Wilson G. N., and Hajra A. K. (1992). Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents. Lipids 27:401–405.

    PubMed  CAS  Google Scholar 

  • Datta N. S., Wilson G. N., and Hajra A. K. (1984). Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N. Engl. J. Med. 311:1080–1083.

    PubMed  CAS  Google Scholar 

  • Dawson R. M. and Clarke N. (1971). Cerebral phospholipids in ‘quaking’ mice. J. Neurochem. 18:1313–1316.

    PubMed  CAS  Google Scholar 

  • Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985). Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82:7071–7075.

    PubMed  CAS  Google Scholar 

  • de Vet E. C. and van den Bosch H. (2000). Alkyl-dihydroxyacetonephosphate synthase. Cell Biochem. Biophys. 32:117–121.

    PubMed  Google Scholar 

  • Edger A. D., Strosznajder J., Horrocks L. A. (1982). Activation of ethanolamine phospholipase A2 in Brain during ischemia. J. Neurochem. 39:1111–1116.

    Google Scholar 

  • Engelmann B., Streich S., Schönthier U. M., Richter W. O., and Duhm J. (1992). Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:32–37.

    CAS  Google Scholar 

  • Engelmann B., Bräutigam C., and Thiery J. (1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (Eds.), Bioactive Lipids. Oily, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Dev. 45:613–631.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2008). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders. Springer, New York, pp. 1–290.

    Google Scholar 

  • Farooqui A. A., Hirashima Y., and Horrocks L. A. (1992). Brain phospholipases and their role in signal transduction. Adv. Exp. Med. Biol. 318:11–25.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rapoport S. I., and Horrocks L. A. (1997a). Membrane phospholipid alterations in Alzheimer disease: Deficiency of ethanolamine plasmalogens. Neurochem. Res. 22:523–527.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997b). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., and Horrocks L. A. (1997c). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (Eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum, London, pp. 335–354.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (Eds.), Nutrition and Biochemistry of Phospholipids. AOCS, Champaign, IL, pp. 14–29.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York, pp. 1–290.

    Google Scholar 

  • Forrester J. S., Milne S. B., Ivanova P. T., and Brown H. A. (2004). Computational lipidomics: A multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65:813–821.

    PubMed  CAS  Google Scholar 

  • Gaposchkin D. P. and Zoeller R. A. (1999). Plasmalogen status influences docosahexaenoic acid levels in a macrophage cell line: Insights using ether lipid-deficient variants. J. Lipid Res. 40:495–503.

    PubMed  CAS  Google Scholar 

  • Ginsberg L., Rafique S., Xuereb J. H., Rapoport S. I., and Gershfeld N. L. (1995). Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res. 698:223–226.

    PubMed  CAS  Google Scholar 

  • Ginsberg L., Xuereb J. H., and Gershfeld N. L. (1998). Membrane instability, plasmalogen content, and Alzheimer’s disease. J. Neurochem. 70:2533–2538.

    PubMed  CAS  Google Scholar 

  • Gorgas K., Teigler A., Komljenovic D., and Just W. W. (2006). The ether lipid-deficient mouse: Tracking down plasmalogen functions. Biochim. Biophys. Acta Mol. Cell Res. 1763:1511–1526.

    CAS  Google Scholar 

  • Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.

    PubMed  CAS  Google Scholar 

  • Gross R. W., Jenkins C. M., Yang J. Y., Mancuso D. J., and Han X. L. (2005). Functional lipidomics: The roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat. 77:52–64.

    PubMed  CAS  Google Scholar 

  • Guan Z. Z., Wang Y. A., Cairns N. J., Lantos P. L., Dallner G., and Sindelar P. J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.

    PubMed  CAS  Google Scholar 

  • Hack M. H. and Helmy F. M. (1978). The diminution of the myelin ethanolamine plasmalogen in brain of the jimpy mouse and brain and spinal cord of the quaking mouse as visualized by thin-layer chromatography. J. Chromatogr. 145:307.

    PubMed  CAS  Google Scholar 

  • Halliwell B. (1994). Free radicals and antioxidants: A personal view [Review]. Nutr. Rev. 52:253–265.

    PubMed  CAS  Google Scholar 

  • Hamazaki T., Sawazaki S., Itomura M., Asaoka E., Nagao Y., Nishimura N., Yazawa K., Kuwamori T., and Kobayashi M. (1996). The effect of docosahexaenoic acid on aggression in young adults – A placebo-controlled double-blind study. J. Clin. Invest. 97:1129–1133.

    PubMed  CAS  Google Scholar 

  • Han X. and Gross R. W. (1991). Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers. Biochim. Biophys. Acta Biomembr. 1069:37–45.

    CAS  Google Scholar 

  • Han X. L., Holtzman D. M., and McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: Molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77:1168–1180.

    PubMed  CAS  Google Scholar 

  • Hara H., Wakisaka T., and Aoyama Y. (2003). Lymphatic absorption of plasmalogen in rats. Br. J. Nutr. 90:29–32.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., Shimada T., Sugioka K., Yamasaki H., Fujii Y., Ishibashi Y., Oka J. I., and Shido O. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J. Neurochem. 81:1084–1091.

    PubMed  CAS  Google Scholar 

  • Hazen S. L., Ford D. A., and Gross R. W. (1991). Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J. Biol. Chem. 266:5629–5633.

    PubMed  CAS  Google Scholar 

  • Heikoop J. C., van Roermund C. W., Just W. W., Ofman R., Schutgens R. B., Heymans H. S., Wanders R. J., and Tager J. M. (1990). Rhizomelic chondrodysplasia punctata. Deficiency of 3-oxoacyl-coenzyme A thiolase in peroxisomes and impaired processing of the enzyme. J. Clin. Invest. 86:126–130.

    PubMed  CAS  Google Scholar 

  • Heymans H. S. A., Schutgens R. B. H., Tan R., van den Bosch H., and Borst P. (1983). Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306:69–70.

    PubMed  CAS  Google Scholar 

  • Heymans H. S. A., Oorthuys J. W. E., Nelck G., Wanders R. J. A., Dingemans K. P., and Schutgens R. B. H. (1985). Peroxisomal abnormalities in rhizomelic chondrodysplasia punctata. J. Inherit. Metab. Dis. 9:329–331.

    Google Scholar 

  • Hofteig J. H., Noronha A. B., Druse M. J., and Keresztes-Nagy C. (1985). Synaptic membrane phospholipids: Effects of maternal ethanol consumption. Exp. Neurol. 87:165–171.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J. N. and Ansell G. B. (Eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical, Amsterdam, pp. 51–93.

    Google Scholar 

  • Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.

    PubMed  CAS  Google Scholar 

  • Huterer S. J., Tourtellotte W. W., and Wherrett J. R. (1995). Alterations in the activity of phospholipases A2 in post-mortem white matter from patients with multiple sclerosis. Neurochem. Res. 20:1335–1343.

    PubMed  CAS  Google Scholar 

  • Infante J. P. and Huszagh V. A. (2001). Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (22: 6n–3) biosynthesis. Mol. Genet. Metab. 72:1–7.

    PubMed  CAS  Google Scholar 

  • Jagannatha H. M. and Sastry P. S. (1981). Ethanolamine plasmalogen and cholesterol ester metabolism in experimental allergic encephalomyelitis. Indian J. Biochem. Biophys. 18:411–416.

    PubMed  CAS  Google Scholar 

  • Janssen A., Baes M., Gressens P., Mannaerts G. P., Declercq P., and Van Veldhoven P. P. (2000). Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab. Invest. 80:31–35.

    PubMed  CAS  Google Scholar 

  • Jones C. R., Arai T., and Rapoport S. I. (1997). Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22:663–670.

    PubMed  CAS  Google Scholar 

  • Kubota M., Nakane M., Nakagomi T., Tamura A., Hisaki H., Shimasaki H., and Ueta N. (2001). Regional distribution of ethanolamine plasmalogen in the hippocampal CA1 and CA3 regions and cerebral cortex of the gerbil. Neurosci. Lett. 301:175–178.

    PubMed  CAS  Google Scholar 

  • Lee S. H., Williams M. V., and Blair I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77:141–157.

    PubMed  CAS  Google Scholar 

  • Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.

    CAS  Google Scholar 

  • Liu S. J., McHowat J., and Creer M. H. (1999). Effects of lysoplasmenylcholine on membrane currents in rabbit ventricular myocytes. J. Mol. Cell Cardiol. 31, 27 (abstract)

    Google Scholar 

  • Lukácová N., Halát G., Chavko M., and Maršala J. (1996). Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem. Res. 21:869–873.

    PubMed  Google Scholar 

  • Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.

    PubMed  CAS  Google Scholar 

  • Mandel H., Sharf R., Berant M., Wanders R. J. A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.

    PubMed  CAS  Google Scholar 

  • Martínez M. (1990). Severe deficiency of docosahexaenoic acid in peroxisomal disorders: A defect of delta 4 desaturation? Neurology 40:1292–1298.

    PubMed  Google Scholar 

  • Martínez M. (1992). Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res. 583:171–182.

    PubMed  Google Scholar 

  • Martínez M., Vázquez E., García-Silva M. T., Manzanares J., Bertran J. M., Castelló F., and Mougan I. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am. J. Clin. Nutr. 71:376S–385S.

    PubMed  Google Scholar 

  • McHowat J., Creer M. H., Hicks K. K., Jones J. H., McCrory R., and Kennedy R. H. (2000). Induction of Ca-independent PLA2 and conservation of plasmalogen polyunsaturated fatty acids in diabetic heart. Am. J. Physiol. Endocrinol. Metab. 279:E25–E32.

    PubMed  CAS  Google Scholar 

  • Mochel F., Grebille A. G., Benachi A., Martinovic J., Razavi F., Rabier D., Simon I., Boddaert N., Brunelle F., and Sonigo P. (2006). Contribution of fetal MR imaging in the prenatal diagnosis of Zellweger syndrome. AJNR Am. J. Neuroradiol. 27:333–336.

    PubMed  CAS  Google Scholar 

  • Motley A. M., Hettema E. H., Hogenhout E. M., Brites P., ten Asbroek A. L., Wijburg F. A., Baas F., Heijmans H. S., Tabak H. F., Wanders R. J., and Distel B. (1997). Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat. Genet. 15:377–380.

    PubMed  CAS  Google Scholar 

  • Munn N. J., Arnio E., Liu D., Zoeller R. A., and Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J. Lipid Res. 44:182–192.

    PubMed  CAS  Google Scholar 

  • Murphy E. J., Schapiro M. B., Rapoport S. I., and Shetty H. U. (2000). Phospholipid composition and levels are altered in Down syndrome brain. Brain Res. 867:9–18.

    PubMed  CAS  Google Scholar 

  • Murphy R. C. (2001). Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: Antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14:463–472.

    PubMed  CAS  Google Scholar 

  • Nishimukai M., Wakisaka T., and Hara H. (2003). Ingestion of plasmalogen markedly increased plasmalogen levels of blood plasma in rats. Lipids 38:1227–1235.

    PubMed  CAS  Google Scholar 

  • Nussbaum J. L., Neskovic N., and Mandel P. (1969). A study of lipid components in brain of the ‘Jimpy’ mouse, a mutant with myelin deficiency. J. Neurochem. 16:927–934.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., Ling S. F., Yeo J. F., Chiueh C. C., and Farooqui A. A. (2005). Injury and recovery of pyramidal neurons in the rat hippocampus after a single episode of oxidative stress induced by intracerebroventricular injection of ferrous ammonium citrate. Reprod. Nutr. Dev. 45:647–662.

    PubMed  CAS  Google Scholar 

  • Owada Y., Tominaga T., Yoshimoto T., and Kondo H. (1994). Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Brain Res Mol Brain Res. 25:364–368.

    PubMed  CAS  Google Scholar 

  • Périchon R., Moser A. B., Wallace W. C., Cunningham S. C., Roth G. S., and Moser H. W. (1998). Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. Biochem. Biophys. Res. Commun. 248:57–61.

    PubMed  Google Scholar 

  • Pettegrew J. W., Panchalingam K., Hamilton R. L., and McClure R. J. (2001). Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 26:771–782.

    PubMed  CAS  Google Scholar 

  • Piomelli D. (2005). The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat. 77:23–34.

    PubMed  CAS  Google Scholar 

  • Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G. Y., Bazan N., Wu J. Y., Porcellati G., and Sun A. Y. (Eds.), Neural Membranes. Humana, New York, pp. 3–35.

    Google Scholar 

  • Portilla D., Shah S. V., Lehman P. A., and Creer M. H. (1994). Role of cytosolic calcium-independent plasmalogen-selective phospholipase A2 in hypoxic injury to rabbit proximal tubules. J. Clin. Invest. 93:1609–1615.

    PubMed  CAS  Google Scholar 

  • Poulos A., Bankier A., Beckman K., Johnson D., Robertson E. F., Sharp P., Sheffield L., Singh H., Usher S., and Wise G. (1991). Glyceryl ethers in peroxisomal disease. Clin Genet. 39:13–25.

    PubMed  CAS  Google Scholar 

  • Purdon A. D. and Rapoport S. I. (2007). Energy consumption by phospholipid metabolism in mammalian brain. In: Gibson G. and Dienel G. (Eds.), Brain Energetics. Integration of Molecular and Cellular Processes, in Handbook of Neurochemistry and Molecular Neurobiology (Lajtha, A., Ed.). Springer, New York. (In press).

    Google Scholar 

  • Purdon A. D., Rosenberger T. A., Shetty H. U., and Rapoport S. I. (2002). Energy consumption by phospholipid metabolism in mammalian brain. Neurochem. Res. 27:1641–1647.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    PubMed  CAS  Google Scholar 

  • Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Reddy T. S. and Horrocks L. A. (1982). Effects of neonatal undernutrition on the lipid composition of gray matter and white matter in rat brain. J. Neurochem. 38:601–605.

    PubMed  CAS  Google Scholar 

  • Reddy T. S., Rajalakshmi R., and Ramakrishnan C. V. (1982). Effects of nutritional rehabilitation on the content and lipid composition of brain gray and white matter of neonatally undernourished rats. J. Neurochem. 39:1297–1301.

    PubMed  CAS  Google Scholar 

  • Rizzo W. B. and Craft D. A. (1991). Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts. J. Clin. Invest. 88:1643–1648.

    PubMed  CAS  Google Scholar 

  • Rizzo W. B., Heinz E., Simon M., and Craft D. A. (2000). Microsomal fatty aldehyde dehydrogenase catalyzes the oxidation of aliphatic aldehyde derived from ether glycerolipid catabolism: Implications for Sjögren-Larsson syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 1535:1–9.

    CAS  Google Scholar 

  • Rodemer C., Thai T. P., Brugger B., Kaercher T., Werner H., Nave K. A., Wieland F., Gorgas K., and Just W. W. (2003). Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12:1881–1895.

    PubMed  CAS  Google Scholar 

  • Roels F., Fischer S., and Kissling W. (1993). Polyunsaturated fatty acids in peroxisomal disorders: A hypothesis and a proposal for treatment. J. Neurol. Neurosurg. Psychiatry 56:937.

    PubMed  CAS  Google Scholar 

  • Rosenberger T. A., Oki J., Purdon A. D., Rapoport S. I., and Murphy E. J. (2002). Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J. Lipid Res. 43:59–68.

    PubMed  CAS  Google Scholar 

  • Roth G. S., Joseph J. A., and Mason R. P. (1995). Membrane alterations as causes of impaired signal transduction in Alzheimer’s disease and aging. Trends Neurosci. 18:203–206.

    PubMed  CAS  Google Scholar 

  • Rüdiger M., von Baehr A., Haupt R., Wauer R. R., and Rüstow B. (2000). Preterm infants with high polyunsaturated fatty acid and plasmalogen content in tracheal aspirates develop bronchopulmonary dysplasia less often. Crit. Care Med. 28:1572–1577.

    PubMed  Google Scholar 

  • Sapirstein A. and Bonventre J. V. (2000). Phospholipases A2 in ischemic and toxic brain injury. Neurochem. Res. 25:745–753.

    PubMed  CAS  Google Scholar 

  • Schedin S., Sindelar P. J., Pentchev P., Brunk U., and Dallner G. (1997). Peroxisomal impairment in Niemann-Pick type C disease. J. Biol. Chem. 272:6245–6251.

    PubMed  CAS  Google Scholar 

  • Shoemaker W. J. and Bloom F. E. (1977). Effect of undernutrition on brain morphology. In: Wurtman R. J. and Wurtman J. J. (Eds.), Nutrition and the Brain. Raven, New York, pp. 147–192.

    Google Scholar 

  • Sindelar P. J., Guan Z. Z., Dallner G., and Ernster L. (1999). The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26:318–324.

    PubMed  CAS  Google Scholar 

  • Singh I., Paintlia A. S., Khan M., Stanislaus R., Paintlia M. K., Haq E., Singh A. K., and Contreras M. A. (2004). Impaired peroxisomal function in the central nervous system with inflammatory disease of experimental autoimmune encephalomyelitis animals and protection by lovastatin treatment. Brain Res. 1022:1–11.

    PubMed  CAS  Google Scholar 

  • Stadelmann-Ingrand S., Pontcharraud R., and Fauconneau B. (2004). Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem. Phys. Lipids 131:93–105.

    PubMed  CAS  Google Scholar 

  • van den Bosch H., Schrakamp G., Hardeman D., Zomer A. W. M., Wanders R. J. A., and Schutgens R. B. H. (1993). Ether lipid synthesis and its deficiency in peroxisomal disorders. Biochimie 75:183–189.

    PubMed  Google Scholar 

  • Viani P., Zini I., Cervato G., Biagini G., Agnati L. F., and Cestaro B. (1995). Effect of endothelin-1 induced ischemia on peroxidative damage and membrane properties in rat striatum synaptosomes. Neurochem. Res. 20:689–695.

    PubMed  CAS  Google Scholar 

  • Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J. Lipid Res. 44:441–449.

    PubMed  CAS  Google Scholar 

  • Vreken P., Valianpour F., Overmars H., Barth P. G., Selhorst J. J. M., Van Gennip A. H., and Wanders R. J. A. (2000). Analysis of plasmenylethanolamines using electrospray tandem mass spectrometry and its application in screening for peroxisomal disorders. J. Inherit. Metab. Dis. 23:429–433.

    PubMed  CAS  Google Scholar 

  • Wanders R. J. A., Purvis Y. R., Heymans H. S. A., Bakkeren J. A. J. M., Parmentier G. G., van Eldere J., Eyssen H., van den Bosch H., Tager J. M., and Schutgens R. B. H. (1986). Age-related differences in plasmalogen content of erythrocytes from patients with the cerebro-hepato-renal (Zellweger) syndrome: Implications for postnatal detection of the disease. J. Inherit. Metab. Dis. 9:335–342.

    PubMed  CAS  Google Scholar 

  • Wells K., Farooqui A. A., Liss L., and Horrocks L. A. (1995). Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.

    PubMed  CAS  Google Scholar 

  • Wing D. R., Harvey D. J., Hughes J., Dunbar P. G., McPherson K. A., and Paton W. D. (1982). Effects of chronic ethanol administration on the composition of membrane lipids in the mouse. Biochem. Pharmacol. 31:3431–3439.

    PubMed  CAS  Google Scholar 

  • Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl. Acad. Sci. USA 94:5073–5077.

    PubMed  CAS  Google Scholar 

  • Yanagihara T. and Cumings J. N. (1969). Alterations of phospholipids, particularly plasmalogens, in the demyelination of multiple sclerosis as compared with that of cerebral oedema. Brain 92:59–70.

    PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., and Mostofsky D. I. (1999). Essential fatty acids are mediators of brain biochemistry and cognitive functions. J. Neurosci. Res. 56:565–570.

    PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    PubMed  CAS  Google Scholar 

  • Zhang J. P. and Sun G. Y. (1995). Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64:1688–1695.

    PubMed  CAS  Google Scholar 

  • Zoeller R. A., Lake A. C., Nagan N., Gaposchkin D. P., Legner M. A., and Lieberthal W. (1999). Plasmalogens as endogenous antioxidants: Somatic cell mutants reveal the importance of the vinyl ether. Biochem. J. 338:769–776.

    PubMed  CAS  Google Scholar 

  • Zoeller R. A., Grazia T. J., LaCamera P., Park J., Gaposchkin D. P., and Farber H. W. (2002). Increasing plasmalogen levels protects human endothelial cells during hypoxia. Am. J. Physiol. Heart Circ. Physiol. 283:H671–H679.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Involvement of Plasmalogens in Neurological Disorders. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_6

Download citation