Plasmalogens play important roles in mammalian brain (Lee, 1998; Nagan and Zoeller, 2001; Farooqui and Horrocks, 2001). Beside being a structural component of cellular membranes and a major reservoir for arachidonic and docosahexaenoic acids (AA and DHA), plasmalogens are also involved in transport of ions across plasma membranes (Gross, 1985), membrane fusion (Lohner, 1996), protection of cellular membranes against oxidative stress (Zoeller et al., 1988; Engelmann et al., 1994), and the efflux of cholesterol from cells mediated by high-density lipoprotein (HDL) (Fig. 5.1) (Mandel et al., 1998). Plasmalogens are also found in the nucleus, where they may be involved in cellular differentiation (Bichenkov and Ellingson, 1999; Albi et al., 2004). The occurrence of plasmalogens in the synaptic cleft suggests that these phospholipids not only play an important role in synaptogenesis, but may also be involved in vesicle formation during neurotransmitter release (Farooqui and Horrocks, 2001). Plasmalogens may also be important in membrane dynamics, allowing the formation of inverted hexagonal structures, a property that may not only contribute to membrane fusion property, but also be important in modulating the membrane fluidity and permeability (Lohner, 1996).


Arachidonic Acid Docosahexaenoic Acid Membrane Fusion Vinyl Ether Fatty Aldehyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acar N., Gregoire S., Andre A., Juaneda P., Joffre C., Bron A. M., Creuzot-Garcher C. P., and Bretillon L. (2007). Plasmalogens in the retina: In situ hybridization of dihydroxyacetone phosphate acyltransferase (DHAP-AT)–the first enzyme involved in their biosynthesis–and comparative study of retinal and retinal pigment epithelial lipid composition. Exp. Eye Res. 84:143–151.PubMedCrossRefGoogle Scholar
  2. Akbar M., Calderon F., Wen Z. M., and Kim H. Y. (2005). Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.PubMedCrossRefGoogle Scholar
  3. Albert C. J., Crowley J. R., Hsu F. F., Thukkani A. K., and Ford D. A. (2002). Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens–Disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes. J. Biol. Chem. 277:4694–4703.PubMedCrossRefGoogle Scholar
  4. Albert C. J., Thukkani A. K., Heuertz R. M., Slungaard A., Hazen S. L., and Ford D. A. (2003). Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde. J. Biol. Chem. 278:8942–8950.PubMedCrossRefGoogle Scholar
  5. Albert C. J., Anbukumar D. S., Monda J. K., Eckelkamp J. T., and Ford D. A. (2007). Myocardial lipidomics. Developments in myocardial nuclear lipidomics. Front. Biosci. 12:2750–2760.PubMedCrossRefGoogle Scholar
  6. Albi E., Cataldi S., Magni M. V., and Sartori C. (2004). Plasmalogens in rat liver chromatin: New molecules involved in cell proliferation. J. Cell. Physiol. 201:439–446.PubMedCrossRefGoogle Scholar
  7. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.PubMedCrossRefGoogle Scholar
  8. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: A specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedCrossRefGoogle Scholar
  9. Basu S. (2004). Isoprostanes: Novel bioactive products of lipid peroxidation. Free Radic. Res. 38:105–122.PubMedCrossRefGoogle Scholar
  10. Bazan N. G. (2005). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  11. Berry K. A. Z. and Murphy R. C. (2005). Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: Structure determination by mass spectrometry. Antioxidants and Redox Signaling 7:157–169.CrossRefGoogle Scholar
  12. Bichenkov E. and Ellingson J. S. (1999). Temporal and quantitative expression of the myelin-associated lipids, ethanolamine plasmalogen, galactocerebroside, and sulfatide, in the differentiating CG-4 glial cell line. Neurochem. Res. 24:1549–1556.PubMedCrossRefGoogle Scholar
  13. Bick R. J., Youker K. A., Pownall H. J., Van Winkle W. B., and Entman M. L. (1991). Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein. Arch. Biochem. Biophys. 286:346–352.PubMedCrossRefGoogle Scholar
  14. Buddecke E. and Andresen G. (1959). Quantitative bestimmung der acetalphosphatide (plasmalogene) in der aorta des menschen unter berucksichtigung der arteriosklerose. Hoppe-Seyler’s Z. Physiol. Chem. 314:38–45.PubMedGoogle Scholar
  15. Calder P. C. (2004). n-3 Fatty acids, inflammation, and immunity–Relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.PubMedCrossRefGoogle Scholar
  16. Calzada C., Bruckdorfer K. R., and Rice-Evans C. A. (1997). The influence of antioxidant nutrients on platelet function in healthy volunteers. Atherosclerosis 128:97–105.PubMedCrossRefGoogle Scholar
  17. Chalimoniuk M., King-Pospisil K., Pedersen W. A., Malecki A., Wylegala E., Mattson M. P., Hennig B., and Toborek M. (2004). Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism. J. Neurochem. 90:629–636.PubMedCrossRefGoogle Scholar
  18. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J. C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.PubMedGoogle Scholar
  19. Chilton F. H., Fonteh A. N., Surette M. E., Triggiani M., and Winkler J. D. (1996). Control of arachidonate levels within inflammatory cells. Biochim. Biophys. Acta 1299:1–15.PubMedGoogle Scholar
  20. Choi Y. S., Goto S., Ikeda I., and Sugano M. (1989). Effect of dietary n-3 polyunsaturated fatty acids on cholesterol synthesis and degradation in rats of different ages. Lipids 24:45–50.PubMedCrossRefGoogle Scholar
  21. Clark K. J. and Murray A. W. (1995). Evidence that the bradykinin-induced activation of phospholipase D and of the mitogen-activated protein kinase cascade involve different protein kinase C isoforms. J. Biol. Chem. 270:7097–7103.PubMedGoogle Scholar
  22. Coleman R. A., Smith W. L., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.PubMedGoogle Scholar
  23. Collado A. P., Latorre E., Fernández I., Aragonés A. D., and Catalán R. E. (2003). Endothelin-1 decreases ethanolamine plasmalogen levels and evokes PAF production in brain microvessels. Microvasc. Res. 66:197–203.PubMedCrossRefGoogle Scholar
  24. Daniel L. W., Small G. W., and Schmitt J. D. (1988). Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem. Biophys. Res. Commun. 151:291–297.PubMedCrossRefGoogle Scholar
  25. Davies S. S., Amarnath V., and Roberts II L. J., (2004). Isoketals: Highly reactive ɣ-ketoaldehydes formed from the H2-isoprostane pathway. Chem. Phys. Lipids 128:85–99.PubMedCrossRefGoogle Scholar
  26. Doolan C. M. and Keenan A. K. (1994). Inhibition by fatty acids of cyclic AMP-dependent protein kinase activity in brush border membranes isolated from human placental vesicles. Brit. J. Pharmacol. 111:509–514.Google Scholar
  27. Duhm J., Engelmann B., Schönthier U. M., and Streich S. (1993). Accelerated maximal velocity of the red blood cell Na+/K+ pump in hyperlipidemia is related to increase in 1-palmitoyl-2-arachidonoyl-plasmalogen phosphatidylethanolamine. Biochim. Biophys. Acta Biomembr. 1149:185–188.CrossRefGoogle Scholar
  28. Duncan R. E., El Sohemy A., and Archer M. C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.PubMedCrossRefGoogle Scholar
  29. Engelmann B. (2004). Plasmalogens: Targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32:147–150.PubMedCrossRefGoogle Scholar
  30. Engelmann B., Streich S., Schönthier U. M., Richter W. O., and Duhm J. (1992). Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:32–37.CrossRefGoogle Scholar
  31. Engelmann B., Bräutigam C., and Thiery J. (1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.PubMedCrossRefGoogle Scholar
  32. Ernster L., Forsmark P., and Nordenbrand K. (1992). The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. BioFactors 3:241–248.PubMedGoogle Scholar
  33. Esterbauer H., Schaur R. J., and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81–128.PubMedCrossRefGoogle Scholar
  34. Fam S. S. and Morrow J. D. (2003). The isoprostanes: Unique products of arachidonic acid oxidation–A review. Curr. Med. Chem. 10:1723–1740.PubMedCrossRefGoogle Scholar
  35. Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J. E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 97:6362–6366.PubMedCrossRefGoogle Scholar
  36. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  37. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedCrossRefGoogle Scholar
  38. Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (Eds.), Handbook of Essential Fatty Acid Biology. Humana, Totowa, NJ, pp. 277–295.Google Scholar
  39. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedCrossRefGoogle Scholar
  40. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  41. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedCrossRefGoogle Scholar
  42. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.PubMedCrossRefGoogle Scholar
  43. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: A matter of fat. J. Neurochem. 101:577–599.PubMedCrossRefGoogle Scholar
  44. Fauconneau B., Stadelmann-Ingrand S., Favrelière S., Baudouin J., Renaud L., Piriou A., and Tallineau C. (2001). Evidence against a major role of plasmalogens in the resistance of astrocytes in lactic acid-induced oxidative stress in vitro. Arch. Toxicol. 74:695–701.PubMedCrossRefGoogle Scholar
  45. Fernstrom J. D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.PubMedCrossRefGoogle Scholar
  46. Ford D. A. and Hale C. C. (1996). Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett. 394:99–102.PubMedCrossRefGoogle Scholar
  47. Fujimoto K., Yao K., Miyazaki T., Hirano H., Nishikawa M., Kimura S., Murayama K., and Nonaka M. (1989). The effect of dietary docosahexaenoate on the learning ability of rats. In: Chandra R. K. (Ed.), Health Effects of Fish and Fish Oils. ARTS Biomedical, The Netherlands, pp. 275–284.Google Scholar
  48. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Brit. J. Pharmacol. 132:1417–1422.CrossRefGoogle Scholar
  49. Gamberucci A., Fulceri R., Bygrave F. L., and Benedetti A. (1997). Unsaturated fatty acids mobilize intracellular calcium independent of IP3 generation and VIA insertion at the plasma membrane. Biochem. Biophys. Res. Commun. 241:312–316.PubMedCrossRefGoogle Scholar
  50. Garrido R., Mattson M. P., Hennig B., and Toborek M. (2001). Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76:1395–1403.PubMedCrossRefGoogle Scholar
  51. Glaser P. E. and Gross R. W. (1995). Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: Discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34:12193–12203.PubMedCrossRefGoogle Scholar
  52. Gorgas K., Teigler A., Komljenovic D., and Just W. W. (2006). The ether lipid-deficient mouse: Tracking down plasmalogen functions. Biochim. Biophys. Acta Mol. Cell Res. 1763:1511–1526.CrossRefGoogle Scholar
  53. Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.PubMedCrossRefGoogle Scholar
  54. Habib A. and Badr K. F. (2004). Molecular pharmacology of isoprostanes in vascular smooth muscle. Chem. Phys. Lipids 128:69–73.PubMedCrossRefGoogle Scholar
  55. Hahnel D., Thiery J., Brosche T., and Engelmann B. (1999). Role of plasmalogens in the enhanced resistance of LDL to copper-induced oxidation after LDL apheresis. Arterioscler. Thromb. Vasc. Biol. 19:2431–2438.PubMedGoogle Scholar
  56. Heinle H., Gugeler N., Felde R., Okech D., and Spiteller G. (2000). Oxidation of plasmalogens produces highly effective modulators of macrophage function. Z. Naturforsch. [C] 55:115–120.Google Scholar
  57. Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J. Pharmacol. Sci. 92:308–316.PubMedCrossRefGoogle Scholar
  58. Hofer G., Lichtenberg D., Kostner G. M., and Hermetter A. (1996). Oxidation of fluorescent glycero- and sphingophospholipids in human plasma lipoproteins: Alkenylacyl subclasses are preferred targets. Clin. Biochem. 29:445–450.PubMedCrossRefGoogle Scholar
  59. Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedCrossRefGoogle Scholar
  60. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedCrossRefGoogle Scholar
  61. Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J. N. and Ansell G. B. (Eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical, Amsterdam, pp. 51–93.CrossRefGoogle Scholar
  62. Hughson F. M. (1995). Molecular mechanisms of protein-mediated membrane fusion. Curr. Opin. Struct. Biol. 5:507–513.PubMedCrossRefGoogle Scholar
  63. Jansen G. A. and Wanders R. J. A. (1997). Plasmalogens and oxidative stress: Evidence against a major role of plasmalogens in protection against the superoxide anion radical. J. Inherit. Metab. Dis. 20:85–94.PubMedCrossRefGoogle Scholar
  64. Jump D. B., Clarke S. D., Thelen A., and Liimatta M. (1994). Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35:1076–1084.PubMedGoogle Scholar
  65. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedCrossRefGoogle Scholar
  66. Keller J. N. and Mattson M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev. Neurosci. 9:105–116.PubMedGoogle Scholar
  67. Khaselev N. and Murphy R. C. (1999). Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic. Biol. Med. 26:275–284.PubMedCrossRefGoogle Scholar
  68. Lahaie I., Hardy P., Hou X., Hassessian H., Asselin P., Lachapelle P., Almazan G., Varma D. R., Morrow J. D., Roberts II L. J., and Chemtob S. (1998). A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F22 on retinal vessels. Am. J. Physiol. 274:R1406–R1416.PubMedGoogle Scholar
  69. Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.CrossRefGoogle Scholar
  70. Leray C., Cazenave J. P., and Gachet C. (2002). Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens. Lipids 37:285–290.PubMedCrossRefGoogle Scholar
  71. Lessig J., Schiller J., Arnhold J., and Fuchs B. (2007). Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J. Lipid Res. 48:1316–1324.PubMedCrossRefGoogle Scholar
  72. Li Q. R., Zhang Q., Wang M., Zhao S. M., Ma J., Luo N., Li N., Li Y. S., Xu G. W., and Li J. S. (2007). Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 89:169–177.PubMedCrossRefGoogle Scholar
  73. Lin D., Lee H. G., Liu Q., Perry G., Smith M. A., and Sayre L. M. (2005). 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1219–1231.PubMedCrossRefGoogle Scholar
  74. Liu D. X., Li L. P., and Augustus L. (2001). Prostaglandin release by spinal cord injury mediates production of hydroxyl radical, malondialdehyde and cell death: A site of the neuroprotective action of methylprednisolone. J. Neurochem. 77:1036–1047.PubMedCrossRefGoogle Scholar
  75. Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81:167–184.PubMedCrossRefGoogle Scholar
  76. Lohner K., Balgavy P., Hermetter A., Paltauf F., and Laggner P. (1991). Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. Biochim. Biophys. Acta 1061:132–140.PubMedCrossRefGoogle Scholar
  77. Maeba R. and Ueta N. (2003). Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J. Lipid Res. 44:164–171.PubMedCrossRefGoogle Scholar
  78. Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.PubMedCrossRefGoogle Scholar
  79. Maeba R., Maeda T., Kinoshita M., Takao K., Takenaka H., Kusano J., Yoshimura N., Takeoka Y., Yasuda D., Okazaki T., and Teramoto T. (2007). Plasmalogens in human serum positively correlate with high-density lipoprotein and decrease with aging. J. Atheroscler. Thromb. 14:12–18.PubMedGoogle Scholar
  80. Mandel H., Sharf R., Berant M., Wanders R. J. A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.PubMedCrossRefGoogle Scholar
  81. McHowat J., Liu S., and Creer M. H. (1998). Selective hydrolysis of plasmalogen phospholipids by Ca2+-independent PLA2 in hypoxic ventricular myocytes. Am. J. Physiol. Cell Physiol. 274:C1727–C1737.Google Scholar
  82. Morrow J. D., Awad J. A., Wu A., Zackert W. E., Daniel V. C., and Roberts II L. J. (1996). Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J. Biol. Chem. 271:23185–23190.PubMedCrossRefGoogle Scholar
  83. Morrow J. D., Tapper A. R., Zackert W. E., Yang J., Sanchez S. C., Montine T. J., and Roberts II L. J. (1999). Formation of novel isoprostane-like compounds from docosahexaenoic acid. Adv. Exp. Med. Biol. 469:343–347.PubMedGoogle Scholar
  84. Munn N. J., Arnio E., Liu D., Zoeller R. A., and Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J. Lipid Res. 44:182–192.PubMedCrossRefGoogle Scholar
  85. Nagan N. and Zoeller R. A. (2001). Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 40:199–229.PubMedCrossRefGoogle Scholar
  86. Nakanishi K., Yasugi E., Morita H., Dohi T., and Oshima M. (1994). Plasmenylethanolamine in human intestinal mucosa detected by an improved method for analysis of phospholipid. Biochem. Mol. Biol. Int. 33:457–462.PubMedGoogle Scholar
  87. Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J. Physiol. (Lond.) 475:83–93.Google Scholar
  88. Nourooz-Zadeh J., Liu E. H. C., Yhlen B., Änggård E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72:734–740.PubMedCrossRefGoogle Scholar
  89. Opere C. A., Zheng W. D., Huang J. F., Adewale A., Kruglet M., and Ohia S. E. (2005). Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: Role of arachidonic acid metabolites. Neurochem. Res. 30:129–137.PubMedCrossRefGoogle Scholar
  90. Page S., Fischer C., Baumgartner B., Haas M., Kreusel U., Loidl G., Hayn M., Ziegler-Heitbrock H. W., Neumeier D., and Brand K. (1999). 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis. J. Biol. Chem. 274:11611–11618.PubMedCrossRefGoogle Scholar
  91. Parlati F., McNew J. A., Fukuda R., Miller R., Sollner T. H., and Rothman J. E. (2000). Topological restriction of SNARE-dependent membrane fusion. Nature 407:194–198.PubMedCrossRefGoogle Scholar
  92. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedCrossRefGoogle Scholar
  93. Pike L. J., Han X., Chung K. N., and Gross R. W. (2002). Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: A quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088.PubMedCrossRefGoogle Scholar
  94. Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J. Biol. Chem. 271:15451–15457.PubMedCrossRefGoogle Scholar
  95. Rao K. V., Vaidyanathan V. V., and Sastry P. S. (1994). Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J. Neurochem. 63:1454–1459.PubMedGoogle Scholar
  96. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedCrossRefGoogle Scholar
  97. Reiss D., Beyer K., and Engelmann B. (1997). Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323:807–814.PubMedGoogle Scholar
  98. Roberts II L. J. and Fessel J. P. (2004). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128:173–186.PubMedCrossRefGoogle Scholar
  99. Roberts II L. J., Montine T. J., Markesbery W. R., Tapper A. R., Hardy P., Chemtob S., Dettbarn W. D., and Morrow J. D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.PubMedCrossRefGoogle Scholar
  100. Rossi M. A., Di Mauro C., and Dianzani M. U. (1993). Action of lipid peroxidation products on phosphoinositide specific phospholipase C. Mol. Aspects Med. 14:273–279.PubMedCrossRefGoogle Scholar
  101. Sakata A., Ida E., Tominaga M., and Onoue K. (1987). Arachidonic acid acts as an intracellular activator of NADPH-oxidase in Fc gamma receptor-mediated superoxide generation in macrophages. J. Immunol. 138:4353–4359.PubMedGoogle Scholar
  102. Sasaki Y., Asaoka Y., and Nishizuka Y. (1993). Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. FEBS Lett. 320:47–51.PubMedCrossRefGoogle Scholar
  103. Sawyer D. B. and Andersen O. S. (1989). Platelet-activating factor is a general membrane perturbant. Biochim. Biophys. Acta 987:129–132.PubMedCrossRefGoogle Scholar
  104. Serhan C. N. (2004). A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: Missing links to resolution. Histochem. Cell Biol. 122:305–321.PubMedCrossRefGoogle Scholar
  105. Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedCrossRefGoogle Scholar
  106. Sindelar P. J., Guan Z. Z., Dallner G., and Ernster L. (1999). The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26:318–324.PubMedCrossRefGoogle Scholar
  107. Songur A., Sarsilmaz M., Sogut S., Ozyurt B., Ozyurt H., Zararsiz I., and Turkoglu A. O. (2004). Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with fish ω-3 fatty acids. Prog. Neuropsychopharmacol. Biol. Psychiatry 28:693–698.PubMedCrossRefGoogle Scholar
  108. Stadelmann-Ingrand S., Pontcharraud R., and Fauconneau B. (2004). Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem. Phys. Lipids 131:93–105.PubMedCrossRefGoogle Scholar
  109. Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. (In press).Google Scholar
  110. Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J. D., Roberts L. J., Hoover R. L., and Badr K. F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 90:136–141.PubMedCrossRefGoogle Scholar
  111. Tanford C. (1980). The Hydrophobic Effects: Formation of Micelles and Biological Membranes. Wiley, New York.Google Scholar
  112. Toborek M., Garrido R., Malecki A., Kaiser S., Mattson M. P., Hennig B., and Young B. (2000). Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp. Neurol. 161:609–620.PubMedCrossRefGoogle Scholar
  113. Uemura Y., Lee T. C., and Snyder F. (1991). A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor (PAF) by generating the lyso-PAF intermediate in the remodeling pathway. J. Biol. Chem. 266:8268–8272.PubMedGoogle Scholar
  114. Weisser M., Vieth M., Stolte M., Riederer P., Pfeuffer R., Leblhuber F., and Spiteller G. (1997). Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem. Phys. Lipids 90:135–142.PubMedCrossRefGoogle Scholar
  115. West J. D. and Marnett L. J. (2005). Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1642–1653.PubMedCrossRefGoogle Scholar
  116. Wilschut J., Duzgunes N., Hoekstra D., and Papahadjopoulos D. (1985). Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 24:8–14.PubMedCrossRefGoogle Scholar
  117. Winkler J. D., Eris T., Sung C. M., Chabot-Fletcher M., Mayer R. J., Surette M. E., and Chilton F. H. (1996). Inhibitors of coenzyme A-independent transacylase induce apoptosis in human HL-60 cells. J. Pharmacol. Exp. Ther. 279:956–966.PubMedGoogle Scholar
  118. Wu M., Harvey K. A., Ruzmetov N., Welch Z. R., Sech L., Jackson K., Stillwell W., Zaloga G. P., and Siddiqui R. A. (2005). Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J. Cancer 117:340–348.PubMedCrossRefGoogle Scholar
  119. Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedCrossRefGoogle Scholar
  120. Yavin E. and Gatt S. (1972). Oxygen-dependent cleavage of the vinyl ether linkage of plasmalogens. 2. Identification of the low molecular weight active component and the reaction mechanism. Eur. J. Biochem. 25:437–446.PubMedCrossRefGoogle Scholar
  121. Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedCrossRefGoogle Scholar
  122. Yin H. Y., Musiek E. S., Gao L., Porter N. A., and Morrow J. D. (2005). Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo. J. Biol. Chem. 280:26600–26611.PubMedCrossRefGoogle Scholar
  123. Young C., Gean P. W., Chiou L. C., and Shen Y. Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.PubMedCrossRefGoogle Scholar
  124. Zarrouki B., Soares A. F., Guichardant M., Lagarde M., and Geloen A. (2007). The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3T3–L1 adipose cell. FEBS Lett. 581:2394–2400.PubMedCrossRefGoogle Scholar
  125. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J. C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.PubMedGoogle Scholar
  126. Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988). A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263:11590–11596.PubMedGoogle Scholar
  127. Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., and Imaizumi K. (1995). Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic. Biol. Med. 18:599–602.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations