Assay and Purification of Plasmalogen-Selective Phospholipase A2 and Lysoplasmalogenase Activities

Plasmalogens represent a special group of glycerophospholipids characterized by a vinyl ether bond at the sn-1 position and arachidonic acid or docosahexaenoic acid at the sn-2 position, and the sn-3 carbon usually has a phospholipid head group like choline or ethanolamine at the glycerol backbone. In all mammalian cells, these glycerophospholipids are especially rich in brain, heart, and red blood cells. While choline plasmalogen is rich in heart, ethanolamine plasmalogen is rich in brain white matter. On the basis of various studies, it is suggested that ethanolamine plasmalogens are abundant in cholesterol-rich biomembranes having long life spans, such as nervous system myelin and red blood cells (Farooqui and Horrocks, 2004). Although the role of plasmalogens is not fully understood, collective evidence suggests that besides being structural component and reservoir for arachidonic and docosahexaenoic acids in neural membranes, plasmalogens play an important role in signal transduction processes, membrane dynamics, membrane fusion, and protection against oxidative stress (Farooqui and Horrocks, 2001). On the basis of two-dimensional NMR studies, it is proposed that choline and ethanolamine plasmalogens have a different glycerol backbone conformation with respect to the membrane interface than diacylglycerophospholipids (Han and Gross, 1990). This unique conformation motif is selectively recognized by enzymes responsible for receptor-mediated breakdown of plasmalogen (Farooqui et al., 2003). The stimulation of kainate type of glutamate receptors on neuronal cell surface results in the stimulation of the Ca2+-independent plasmalogen-selective PLA2 (PlsCho-PLA2 and PlsEtn-PLA2) and generation of arachidonic or docosahexaenoic acids and lysoplasmalogen (Farooqui et al., 2003). Arachidonic and docosahexaenoic acids are metabolized to eicosanoids and docosanoids, respectively. Lysoplasmalogen is either reacylated to plasmalogen or hydrolyzed by lysoplasmalogenase (Farooqui et al., 2003; Farooqui and Horrocks, 2007). Plasmalogen-selective-PLA2 has been purified and characterized from various sources including heart, brain, and kidney (Hazen and Gross, 1993; Hirashima et al., 1992; Portilla and Dai, 1996). The activity of this enzyme can be determined by radiochemical and fluorometric procedures (Farooqui and Horrocks, 1988).


Alcohol Dehydrogenase Docosahexaenoic Acid Fatty Aldehyde Free Aldehyde Brain Microsome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bligh E. G. and Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917.PubMedGoogle Scholar
  2. Dole V. P. (1956). A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. Clin. Invest. 35:150–154.PubMedCrossRefGoogle Scholar
  3. Farooqui A. A. and Horrocks L. A. (1988). Methods for the determination of phospholipases, lipases and lysophospholipases. In: Boulton A. A., Baker G. B., and Horrocks L. A. (eds.), Neuromethods, Vol. 7: Lipids and Related Compounds. Humana Press, New Jersey, pp. 179–209.Google Scholar
  4. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  5. Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.Google Scholar
  6. Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  7. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.Google Scholar
  8. Farooqui A. A., Yang H.-C., Hirashima Y., and Horrocks L. A. (1999). Determination of plasmalogen-selective phospholipase A2 activity by radiochemical and fluorometric assay procedures. In: Doolittle M. H. and Reue K. (eds.), Mammalian Lipases and Phospholipases. Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 39–47.Google Scholar
  9. Farooqui A. A., Yang H.C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.PubMedCrossRefGoogle Scholar
  10. Gunawan J. and Debuch H. (1981). Liberation of free aldehyde from 1-(1-alkenyl)-sn-glycero-3-phosphoethanolamine (lysoplasmalogen) by rat liver microsomes. Hoppe-Seyler’s Z. Physiol. Chem. 362:445–452.PubMedGoogle Scholar
  11. Gunawan J. and Debuch H. (1982). Lysoplasmalogenase–A microsomal enzyme from rat brain. J. Neurochem. 39:693–699.PubMedCrossRefGoogle Scholar
  12. Han X. L. and Gross R. W. (1990). Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry 29:4992–4996.PubMedCrossRefGoogle Scholar
  13. Han X. L., Zupan L. A., Hazen S. L., and Gross R. W. (1992). Semisynthesis and purification of homogeneous plasmenylcholine molecular species. Anal. Biochem. 200:119–124.PubMedCrossRefGoogle Scholar
  14. Hanahan D. J., Nouchi T., Weintraub S. T., and Olson M. S. (1990). Novel route to preparation of high purity lysoplasmenylethanolamine. J. Lipid Res. 31:2113–2117.PubMedGoogle Scholar
  15. Hazen S. L. and Gross R. W. (1993). The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the coordinated regulation of phospholipolysis and glycolysis. J. Biol. Chem. 268:9892–9900.PubMedGoogle Scholar
  16. Hirashima Y., Jurkowitz-Alexander M. S., Farooqui A. A., and Horrocks L. A. (1989a). Continuous spectrophotometric assay of phospholipase A2 activity hydrolyzing plasmalogens using coupling enzymes. Anal. Biochem. 176:180–184.PubMedCrossRefGoogle Scholar
  17. Hirashima Y., Farooqui A. A., and Horrocks L. A. (1989b). Assay procedures and properties of plasmalogenase, lysoplasmalogenase and plasmalogen specific phospholipase A2. In: Stobaugh R. E. (ed.), Frontiers of Chemistry: Biotechnology. American Chemical Society, Washington, DC, pp. 91–102.Google Scholar
  18. Hirashima Y., Farooqui A. A., and Horrocks L. A. (1989c). Fluorimetric coupled enzyme assay for lysoplasmalogenase activity in liver. Biochem. J. 260:605–608.PubMedGoogle Scholar
  19. Hirashima Y., Farooqui A. A., Murphy E. J., and Horrocks L. A. (1990a). Purification of plasmalogens using Rhizopus delemar lipase and Naja naja naja phospholipase A2. Lipids 25:344–348.PubMedCrossRefGoogle Scholar
  20. Hirashima Y., Mills J. S., Yates A. J., and Horrocks L. A. (1990b). Phospholipase A2 activities with a plasmalogen substrate in brain and in neural tumor cells: A sensitive and specific assay using pyrenesulfonyl-labeled plasmenylethanolamine. Biochim. Biophys. Acta. 1074:35–40.Google Scholar
  21. Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  22. Jurkowitz M. S., Horrocks L. A., and Litsky M. L. (1999). Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:142–156.Google Scholar
  23. Jurkowitz-Alexander M., Ebata H., Mills J. S., Murphy E. J., and Horrocks L. A. (1989). Solubilization, purification, and characterization of lysoplasmalogen alkenylhydrolase (lysoplasmalogenase) from rat liver microsomes. Biochim. Biophys. Acta. 1002:203–212.PubMedGoogle Scholar
  24. Jurkowitz-Alexander M. S., Hirashima Y., and Horrocks L. A. (1991). Coupled enzyme assays for phospholipase activities with plasmalogen substrates. Methods Enzymol. 197:79–89.PubMedCrossRefGoogle Scholar
  25. Jurkowitz-Alexander M. S. and Horrocks L. A. (1990). Lysoplasmalogenase: Solubilization and partial purification from liver microsomes. Meth. Enzymol. 197:483–490.CrossRefGoogle Scholar
  26. Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J. Biol. Chem. 271:15451–15457.PubMedCrossRefGoogle Scholar
  27. Reynolds L. J., Washburn W. N., Deems R. A., and Dennis E. A. (1991). Assay strategies and methods for phospholipases. Methods Enzymol. 197:3–23.PubMedCrossRefGoogle Scholar
  28. Somerharju P. (2002). Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 116:57–74.PubMedCrossRefGoogle Scholar
  29. Thompson D. H., Shin J. W., Boomer J., and Kim J. M. (2004). Preparation of plasmenylcholine lipids and plasmenyl-type liposome dispersions. In: Duzgunes N. (ed.), Liposomes, Part D. Methods in Enzymology. Academic Press, San Diego, pp. 153–168.CrossRefGoogle Scholar
  30. Yang H.C., Farooqui A. A., Rammohan K. W., Haun S. E., and Horrocks L. A. (1997). Occurrence and characterization of plasmalogen-selective phospholipase A2 in brain of various animal species. J. Neurochem. 69:205.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations