Among the glycerophospholipids, plasmalogens are a special class characterized by the presence of a long-chain enol ether (vinyl ether) bond at the sn-1 position of the glycerol moiety. In the plasmalogen molecule, the perpendicular orientation of arachidonyl or docosahexaenoyl chains at the sn-2 position of the glycerol moiety and the lack of a carbonyl group at the sn-1 position affect the hydrophilicity of the head groups, resulting in stronger intermolecular hydrogen bonding between the head groups (Lohner, 1996). These properties allow ethanolamine plasmalogens to adopt the inverse hexagonal phase with greater propensity, but may also be responsible for a different membrane potential compared with diacylglycerophospholipids (Lohner, 1996). Plasmalogens can be distinguished from diacylglycerolipids in two properties. First, the vinyl ether linkage of plasmalogens is acid labile and second, plasmalogens act as efficient antioxidants (Murphy, 2001). Neural membrane plasmalogens contain up to 70% of docosahexaenoic acid at the sn-2 position (Layden et al., 2005). Like diacylglycerophospholipids, degradation of the plasmalogens is a receptor-mediated process coupled with the stimulation of plasmalogenselective phospholipase A2 (PlsEtn-PLA2). Because the enol–ether linkage is susceptible to oxidation (Weisser and Spiteller, 1996), plasmalogens undergo an epoxidation process. Their epoxides readily undergo hydrolytic cleavage to form “long chain” α-hydroxyaldehydes. These aldehydes accumulate in brain on aging and under pathological conditions (Weisser and Spiteller, 1996).


Arachidonic Acid Docosahexaenoic Acid Vinyl Ether Signal Transduction Process Fatty Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert C. J., Crowley J. R., Hsu F. F., Thukkani A. K., and Ford D. A. (2002). Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens–Disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes. J. Biol. Chem. 277:4694–4703.PubMedGoogle Scholar
  2. André A., Chanséaume E., Dumusois C., Cabaret S., Berdeaux O., and Chardigny J. M. (2006). Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: A comparison between weaned, adult and aged mice. Brain Res. 1085:28–32.PubMedGoogle Scholar
  3. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.PubMedGoogle Scholar
  4. Arthur G. and Choy P. C. (1986). Acylation of 1-alkenyl-glycerophosphocholine and 1-acyl-glycerophosphocholine in guinea pig heart. Biochem. J. 236:481–487.PubMedGoogle Scholar
  5. Arthur G., Zaborniak C. L., and Choy P. C. (1987). The presence of 1-radyl-glycerophosphoethanolamine acyltransferase activity in guinea pig heart mitochondria. Biochem. Cell Biol. 65:1016–1021.PubMedGoogle Scholar
  6. Bazan N. G. (2005). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedGoogle Scholar
  7. Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91:5252–5256.PubMedGoogle Scholar
  8. Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.PubMedGoogle Scholar
  9. Bosetti F., Langenbach R., and Weerasinghe G. R. (2004). Prostaglandin E2 and microsomal prostaglandin E synthase-2 expression are decreased in the cyclooxygenase-2-deficient mouse brain despite compensatory induction of cyclooxygenase-1 and Ca2+-dependent phospholipase A2. J. Neurochem. 91:1389–1397.PubMedGoogle Scholar
  10. Caldwell R. A. and Baumgarten C. M. (1998). Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ. Res. 83:533–540.PubMedGoogle Scholar
  11. Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.PubMedGoogle Scholar
  12. Consilvio C., Vincent A. M., and Feldman E. L. (2004). Neuroinflammation, COX-2, and ALS–a dual role? Exp. Neurol. 187:1–10.PubMedGoogle Scholar
  13. Fam S. S. and Morrow J. D. (2003). The isoprostanes: Unique products of arachidonic acid oxidation–A review. Curr. Medicinal Chem. 10:1723–1740.Google Scholar
  14. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  15. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  16. Farooqui A. A. and Horrocks L. A. (2001a). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J. Mol. Neurosci. 16:263–272.Google Scholar
  17. Farooqui A. A. and Horrocks L. A. (2001b). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  18. Farooqui A. A. and Horrocks L. A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Develop. 45:613–631.Google Scholar
  19. Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders. Springer, New York, pp. 1–394.Google Scholar
  20. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  21. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedGoogle Scholar
  22. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.PubMedGoogle Scholar
  23. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic, London, pp. 335–354.Google Scholar
  24. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  25. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedGoogle Scholar
  26. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: Localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  27. Farooqui A. A., Rapoport S. I., and Horrocks L. A. (1997). Membrane phospholipid alterations in Alzheimer disease: Deficiency of ethanolamine plasmalogens. Neurochem. Res. 22:523–527.PubMedGoogle Scholar
  28. Farooqui A. A., Wells K., and Horrocks L. A. (1995a). Breakdown of membrane phospholipids in Alzheimer disease: Involvement of excitatory amino acid receptors. Molec. Chem. Neuropathol. 25:155–173.Google Scholar
  29. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1995b). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.PubMedGoogle Scholar
  30. Felde R. and Spiteller G. (1995). Plasmalogen oxidation in human serum lipoproteins. Chem. Phys. Lipids 76:259–267.PubMedGoogle Scholar
  31. Fonteh A. N. and Chilton F. H. (1992). Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation. J. Immunol. 148:1784–1791.PubMedGoogle Scholar
  32. Ford D. A. and Gross R. W. (1988). Identification of endogenous 1-O-alk-1′-enyl-2-acyl-sn-glycerol in myocardium and its effective utilization by choline phosphotransferase. J. Biol. Chem. 263:2644–2650.PubMedGoogle Scholar
  33. Ginsberg L., Xuereb J. H., and Gershfeld N. L. (1998). Membrane instability, plasmalogen content, and Alzheimer’s disease. J. Neurochem. 70:2533–2538.PubMedCrossRefGoogle Scholar
  34. Guan Z. Z., Wang Y. A., Cairns N. J., Lantos P. L., Dallner G., and Sindelar P. J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.PubMedGoogle Scholar
  35. Hahnel D., Huber T., Kurze V., Beyer K., and Engelmann B. (1999). Contribution of copper binding to the inhibition of lipid oxidation by plasmalogen phospholipids. Biochem. J. 340:377–383.PubMedGoogle Scholar
  36. Han X. and Gross R. W. (1991). Proton nuclear magnetic resonance studies on the molecular dynamics of plasmenylcholine/cholesterol and phosphatidylcholine/cholestrol bilayers. Biochim. Biophys. Acta Biomembr. 1063:129–136.Google Scholar
  37. Hazen S. L., Ford D. A., and Gross R. W. (1991). Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J. Biol. Chem. 266:5629–5633.PubMedGoogle Scholar
  38. Hazen S. L. and Gross R. W. (1993). The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the coordinated regulation of phospholipolysis and glycolysis. J. Biol. Chem. 268:9892–9900.PubMedGoogle Scholar
  39. Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.PubMedGoogle Scholar
  40. Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.PubMedGoogle Scholar
  41. Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells–Autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.PubMedGoogle Scholar
  42. Horrocks L. A. (1969). Metabolism of the ethanolamine phosphoglycerides of mouse brain myelin and microsomes. J. Neurochem. 16:13–18.PubMedGoogle Scholar
  43. Horrocks L. A. (1989). Sources of brain arachidonic acid uptake and turnover in glycerophospholipids. Ann. N Y Acad. Sci. 559:17–24.PubMedGoogle Scholar
  44. Ishii S., Nagase T., and Shimizu T. (2002). Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat. 68–69:599–609.PubMedGoogle Scholar
  45. Jurkowitz-Alexander M., Ebata H., Mills J. S., Murphy E. J., and Horrocks L. A. (1989). Solubilization, purification, and characterization of lysoplasmalogen alkenylhydrolase (lysoplasmalogenase) from rat liver microsomes. Biochim. Biophys. Acta 1002:203–212.PubMedGoogle Scholar
  46. Kantarci A. and Van Dyke T. E. (2003). Lipoxins in chronic inflammation. Crit. Rev. Oral Biol. Med. 14:4–12.PubMedGoogle Scholar
  47. Khaselev N. and Murphy R. C. (2000a). Peroxidation of arachidonate containing plasmenyl glycerophosphocholine: facile oxidation of esterified arachidonate at carbon-5. Free Radic. Biol. Med. 29:620–632.PubMedGoogle Scholar
  48. Khaselev N. and Murphy R. C. (2000b). Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine. J. Lipid Res. 41:564–572.PubMedGoogle Scholar
  49. Kim S. Y., Min D. S., Choi J. S., Choi Y. S., Park H. J., Sung K. W., Kim J., and Lee M. Y. (2004). Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J. Neuropathol. Exp. Neurol. 63:812–820.PubMedGoogle Scholar
  50. Latorre E., Aragonés M. D., Fernández I., and Catalán R. E. (1999). Platelet-activating factor modulates brain sphingomyelin metabolism. Eur. J. Biochem. 262:308–314.PubMedGoogle Scholar
  51. Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.PubMedGoogle Scholar
  52. Layden B. T., Abukhdeir A. M., Malarkey C., Oriti L. A., Salah W., Stigler C., Geraldes C. F. G. C., and de Freitas D. M. (2005). Identification of Li+ binding sites and the effect of Li+ treatment on phospholipid composition in human neuroblastoma cells: A Li-7 and P-31 NMR study. Biochim. Biophys. Acta Mol. Basis Dis. 1741:339–349.Google Scholar
  53. Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.Google Scholar
  54. Lessig J., Schiller J., Arnhold J., and Fuchs B. (2007). Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J. Lipid Res. 48:1316–1324.PubMedGoogle Scholar
  55. Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes?. Chem. Phys. Lipids 81:167–184.PubMedGoogle Scholar
  56. Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.PubMedGoogle Scholar
  57. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J. M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  58. Marsche G., Heller R., Fauler G., Kovacevic A., Nuszkowski A., Graier W., Sattler W., and Malle E. (2004). 2-Chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler. Thromb. Vasc. Biol. 24:2302–2306.PubMedGoogle Scholar
  59. Masuzawa Y., Sugiura T., Ishima Y., and Waku K. (1984). Turnover rates of the molecular species of ethanolamine plasmalogen of rat brain. J. Neurochem. 42:961–968.PubMedGoogle Scholar
  60. McHowat J., Liu S., and Creer M. H. (1998). Selective hydrolysis of plasmalogen phospholipids by Ca2+-independent PLA2 in hypoxic ventricular myocytes. Am. J. Physiol. Cell Physiol. 274:C1727–C1737.Google Scholar
  61. Miller S. L., Benjamin J. A., and Morell P. (1977). Metabolism of glycerophospholipids of myelin and microsomes in rat brain. Reutilization of precursors. J. Biol. Chem. 252:4025–4037.Google Scholar
  62. Miller S. L. and Morell P. (1978). Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats. J. Neurochem. 31:771–777.PubMedGoogle Scholar
  63. Mlakar A. and Spiteller G. (1996). Distinction between enzymic and nonenzymic lipid peroxidation. J. Chromatogr. A 743:293–300.Google Scholar
  64. Morand O. H., Zoeller R. A., and Raetz C. R. H. (1988). Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 263:11597–11606.PubMedGoogle Scholar
  65. Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.PubMedGoogle Scholar
  66. Murphy R. C. (2001). Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: Antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14:463–472.PubMedGoogle Scholar
  67. Norel X. and Brink C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: Recent clues. Pharmacol. Ther. 103:81–94.PubMedGoogle Scholar
  68. O’Banion M. K. (1999). Cyclooxygenase-2: Molecular biology, pharmacology, and neurobiology. Crit. Rev. Neurobiol. 13:45–82.PubMedGoogle Scholar
  69. Périchon R., Moser A. B., Wallace W. C., Cunningham S. C., Roth G. S., and Moser H. W. (1998). Peroxisomal disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. Biochem. Biophys. Res. Commun. 248:57–61.PubMedGoogle Scholar
  70. Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J. H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004a). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J. Biol. Chem. 279:11320–11326.PubMedGoogle Scholar
  71. Pettus B. J., Chalfant C. E., and Hannun Y. A. (2004b). Sphingolipids in inflammation: Roles and implications. Curr. Mol. Med. 4:405–418.PubMedGoogle Scholar
  72. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  73. Portilla D., Crew M. D., Grant D., Serrero G., Bates L. M., Dai G. H., Sasner M., Cheng J., and Buonanno A. (1998). cDNA cloning and expression of a novel family of enzymes with calcium-independent phospholipase A2 and lysophospholipase activities. J. Am. Soc. Nephrol. 9:1178–1186.PubMedGoogle Scholar
  74. Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J. Biol. Chem. 271:15451–15457.PubMedGoogle Scholar
  75. Pyne S. (2004). Lysolipids: Sphingosine 1-phosphate and lysophosphatidic acid. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 85–106.Google Scholar
  76. Rintala J., Seemann R., Chandrasekaran K., Rosenberger T. A., Chang L., Contreras M. A., Rapoport S. I., and Chang M. C. J. (1999). 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890.PubMedGoogle Scholar
  77. Rosenberger T. A., Oki J., Purdon A. D., Rapoport S. I., and Murphy E. J. (2002). Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J. Lipid Res. 43:59–68.PubMedGoogle Scholar
  78. Schonefeld M., Noble S., Bertorello A. M., Mandel L. J., Creer M. H., and Portilla D. (1996). Hypoxia-induced amphiphiles inhibit renal Na+, K+-ATPase. Kidney Int. 49:1289–1296.PubMedGoogle Scholar
  79. Sergeeva M., Strokin M., and Reiser G. (2005). Regulation of intracellular calcium levels by polyunsaturated fatty acids, arachidonic acid and docosahexaenoic acid, in astrocytes: Possible involvement of phospholipase A2. Reprod. Nutr. Develop. 45:633–646.Google Scholar
  80. Serhan C. N. (1994). Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212:1–25.PubMedGoogle Scholar
  81. Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedGoogle Scholar
  82. Serhan C. N. (2006). Novel chemical mediators in the resolution of inflammation: Resolvins and protectins. Anesthesiol. Clinics N. Am. 24:341–364.Google Scholar
  83. Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  84. Serhan C. N. and Levy B. (2003). Novel pathways and endogenous mediators in anti-inflammation and resolution. Chem. Immunol. Allergy 83:115–145.PubMedGoogle Scholar
  85. Serhan C. N. and Savill J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunol. 6:1191–1197.Google Scholar
  86. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.PubMedGoogle Scholar
  87. Stadelmann-Ingrand S., Favrelière S., Fauconneau B., Mauco G., and Tallineau C. (2001). Plasmalogen degradation by oxidative stress: Production and disappearance of specific fatty aldehydes and fatty α-hydroxyaldehydes. Free Radical Biol. Med. 31:1263–1271.Google Scholar
  88. Stadelmann-Ingrand S., Pontcharraud R., and Fauconneau B. (2004). Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem. Phys. Lipids 131:93–105.PubMedGoogle Scholar
  89. Strokin M., Chechneva O., Reymann K. G., and Reiser G. (2006). Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 140:547–553.PubMedGoogle Scholar
  90. Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Brit. J. Pharmacol. 139:1014–1022.Google Scholar
  91. Svensson C. I., Zattoni M., and Serhan C. N. (2007). Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J. Exp. Med. 204:245–252.PubMedGoogle Scholar
  92. Thukkani A. K., Albert C. J., Wildsmith K. R., Messner M. C., Martinson B. D., Hsu F. F., and Ford D. A. (2003a). Myeloperoxidase-derived reactive chlorinating species from human monocytes target plasmalogens in low density lipoprotein. J. Biol. Chem. 278:36365–36372.PubMedGoogle Scholar
  93. Thukkani A. K., McHowat J., Hsu F. F., Brennan M. L., Hazen S. L., and Ford D. A. (2003b). Identification of.-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108:3128–3133.PubMedGoogle Scholar
  94. Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18:563–570.PubMedGoogle Scholar
  95. Turini M. E. and Holub B. J. (1994). The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619- stimulated human platelets. Biochim. Biophys. Acta Lipids Lipid Metab. 1213:21–26.Google Scholar
  96. Watkins L. R., Milligan E. D., and Maier S. F. (2001). Glial activation: A driving force for pathological pain. Trends Neurosci. 24:450–455.PubMedGoogle Scholar
  97. Weisser M. and Spiteller G. (1996). Increase of aldehydic compounds derived from plasmalogens in the brain of aged cattle. Chem. Phys. Lipids 82:173–178.PubMedGoogle Scholar
  98. Weisser M., Vieth M., Stolte M., Riederer P., Pfeuffer R., Leblhuber F., and Spiteller G. (1997). Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem. Phys. Lipids 90:135–142.PubMedGoogle Scholar
  99. Wildsmith K. R., Albert C. J., Hsu F. F., Kao J. L. F., and Ford D. A. (2006). Myeloperoxidase-derived 2-chlorohexadecanal forms Schiff bases with primary amines of ethanolamine glycerophospholipids and lysine. Chem. Phys. Lipids 139:157–170.PubMedGoogle Scholar
  100. Williams S. D. and Ford D. A. (1997). Activation of myocardial cAMP-dependent protein kinase by lysoplasmenylcholine. FEBS Lett. 420:33–38.PubMedGoogle Scholar
  101. Williams S. D. and Ford D. A. (2001). Calcium-independent phospholipase A2 mediates CREB phosphorylation and c-fos expression during ischemia. Am. J. Physiol. Heart Circ. Physiol. 281:H168–H176.PubMedGoogle Scholar
  102. Wolf M. J. and Gross R. W. (1996). The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2–Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271:20989–20992.PubMedGoogle Scholar
  103. Wolf R. A. and Gross R. W. (1985). Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J. Biol. Chem. 260:7295–7303.PubMedGoogle Scholar
  104. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994a). Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299:91–95.PubMedGoogle Scholar
  105. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994b). Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199:1158–1166.PubMedGoogle Scholar
  106. Yang H.-C., Farooqui A. A., Rammohan K. W., Haun S. E., and Horrocks L. A. (1997). Occurrence and characterization of plasmalogen-selective phospholipase A2 in brain of various animal species. J. Neurochem. 69:S205C.Google Scholar
  107. Zimmerman G. A., Elstad M. R., Lorant D. E., McIntyre T. M., Prescott S. M., Topham M. K., Weyrich A. S., and Whatley R. E. (1996). Platelet-activating factor (PAF): Signalling and adhesion in cell-cell interactions. Adv. Exp. Med. Biol. 416:297–304.PubMedGoogle Scholar
  108. Zommara M., Tachibana N., Mitsui K., Nakatani N., Sakono M., Ikeda I., and Imaizumi K. (1995). Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radical Biol. Med. 18:599–602.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations