Advertisement

Plasmalogens account for the major portion of the ethanolamine glycerophospholipids in the adult human brain (50%), but the brain of newborn babies has low levels (7% of total phospholipids mass) (Horrocks and Sharma, 1982). Levels of ethanolamine plasmalogen (PlsEtn) increase rapidly during the intense period of myelination and ethanolamine glycerophospholipids of myelin sheath contain up to 70% PlsEtn. An eight-fold increase in PlsEtn levels per gram of brain tissue occurs in white matter during first year of life so that PlsEtn accounts for 20% of the glycerophospholipid mass and 70% of the ethanolamine glycerophospholipids (Balakrishnan et al., 1961). At that time, myelination is rapid. The highest level of myelin is between 30 and 40 years of age (Toews and Horrocks, 1976). In human brain, there is a steep rise in PlsEtn content, followed by a further rise up to 30–40 years of age. This is followed by a decline of PlsEtn levels during normal aging. At 70 years of age, the levels of PlsEtn are 18% less than at 40 years of age (Rouser and Yamamoto, 1968; Horrocks et al., 1981). In chicks, there is a marked increase in plasmalogen levels in synaptosomes during the first 3 days after hatching (Getz et al., 1968). Collectively, these studies suggest that plasmalogens are major glycerophospholipids in brain tissue. Their metabolism may be involved in signal transduction processes associated with neural cell functions such as synaptogenesis, myelination, and ion transport (Farooqui and Horrocks, 2001).

Plasmalogens impart membranes with different biophysical properties such as phase transition temperature, bilayer thickness, acyl chain packing free volume, and lateral domain. The perpendicular orientation of the sn-2 acyl chain at the membrane surface and the lack of a carbonyl group at the sn-1 position in plasmalogens affect the hydrophilicity of the head group, resulting in stronger intermolecular hydrogen bonding between the head groups (Lohner, 1996). These properties allow PlsEtns to adopt the inverse hexagonal phase and may be responsible for a different membrane potential compared with other glycerophospholipids (Lohner, 1996). This property affects lipid packing, fluidity, and interaction with neural membrane receptors and ion channels. In cellular membranes and lipoproteins, plasmalogens account for 15–20% and 5% of all phospholipids, respectively (Nagan and Zoeller, 2001; Engelmann et al., 1994). PlsEtn and PlsCho are the two major plasmalogen species found in mammalian cell membranes. In most cells, PlsEtns exceed the choline plasmalogens by 10-fold, with the exception of cardiac and skeletal muscle where choline plasmalogen dominates. The level of plasmalogens in brain tissue depends on the degree of myelination and increases rapidly during myelinogenesis (Horrocks, 1972; Horrocks and Sharma, 1982). Factors that modulate the levels of plasmalogens in neurons, astrocytes, and oligodendrocytes during myelination and aging remain unknown.

Keywords

Lipid Raft Flavin Adenine Dinucleotide Ether Lipid Dihydroxyacetone Phosphate Signal Transduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar N., Gregoire S., Andre A., Juaneda P., Joffre C., Bron A. M., Creuzot-Garcher C. P., and Bretillon L. (2007). Plasmalogens in the retina: In situ hybridization of dihydroxyacetone phosphate acyltransferase (DHAP-AT)–the first enzyme involved in their biosynthesis–and comparative study of retinal and retinal pigment epithelial lipid composition. Exp. Eye Res. 84:143–151.PubMedCrossRefGoogle Scholar
  2. Aguado B. and Campbell R. D. (1998). Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 273:4096–4105.PubMedCrossRefGoogle Scholar
  3. Albi E., Cataldi S., Magni M. V., and Sartori C. (2004). Plasmalogens in rat liver chromatin: New molecules involved in cell proliferation. J. Cellular Physiol. 201:439–446.CrossRefGoogle Scholar
  4. Albi E. and Magni M. P. V. (2004). The role of intranuclear lipids. Biol. Cell. 96:657–667.PubMedCrossRefGoogle Scholar
  5. André A., Chanséaume E., Dumusois C., Cabaret S., Berdeaux O., and Chardigny J. M. (2006a). Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: A comparison between weaned, adult and aged mice. Brain Res. 1085:28–32.PubMedCrossRefGoogle Scholar
  6. André A., Juanéda P., Sébédio J. L., and Chardigny J. M. (2005a). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: Focus on plasmalogens. Lipids 40:799–806.PubMedCrossRefGoogle Scholar
  7. André A., Juanéda P., Sébédio J. L., and Chardigny J. M. (2006b). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.PubMedCrossRefGoogle Scholar
  8. André A., Tessier C., Brétillon L., Sébédio J. L., and Chardigny J. M. (2005b). In situ hybridization of dihydroxyacetone phosphate acyltransferase, the regulating enzyme involved in plasmalogen biosynthesis. Mol. Brain Res. 136:142–147.PubMedCrossRefGoogle Scholar
  9. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: A specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedCrossRefGoogle Scholar
  10. Balakrishnan S., Goodman H., and Cumings J. N. (1961). The distribution of phosphorus-containing lipid compounds in the human brain. J. Neurochem. 8:276–284.PubMedCrossRefGoogle Scholar
  11. Biermann J., Just W. W., Wanders R. J., and van den Bosch H. (1999). Alkyl-dihydroxyacetone phosphate synthase and dihydroxyacetone phosphate acyltransferase form a protein complex in peroxisomes. Eur. J. Biochem. 261:492–499.PubMedCrossRefGoogle Scholar
  12. Biermann J., Schoonderwoerd K., Hom M. L., Luthjens L. H., and van den Bosch H. (1998). The native molecular size of alkyl-dihydroxyacetonephosphate synthase and dihydroxyacetonephosphate acyltransferase. Biochim. Biophys. Acta 1393:137–142.PubMedGoogle Scholar
  13. Blank M. L., Smith Z. L., Cress E. A., and Snyder F. (1994). Molecular species of ethanolamine plasmalogens and transacylase activity in rat tissues are altered by fish oil diets. Biochim. Biophys. Acta Lipids Lipid Metab. 1214:295–302.CrossRefGoogle Scholar
  14. Brites P., Waterham H. R., and Wanders R. J. A. (2004). Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:219–231.CrossRefGoogle Scholar
  15. Brosche T. (2001). Plasmalogen levels in serum from patients with impaired carbohydrate or lipid metabolism and in elderly subjects with normal metabolic values. Arch. Gerontol. Geriatr. 32:283–294.PubMedCrossRefGoogle Scholar
  16. Cai J., Nelson K. C., Wu M., Sternberg P., Jr., and Jones D. P. (2000). Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 19:205–221.PubMedCrossRefGoogle Scholar
  17. Causeret C., Bentejac M., Albet S., Teubner B., and Bugaut M. (1997). Copurification of dihydroxyacetone-phosphate acyl-transferase and other peroxisomal proteins from liver of fenofibrate-treated rats. Biochimie 79:423–433.PubMedCrossRefGoogle Scholar
  18. Chang L., Ernst T., Poland R. E., and Jenden D. J. (1996). In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci. 58:2049–2056.PubMedCrossRefGoogle Scholar
  19. Datta S. C., Ghosh M. K., and Hajra A. K. (1990). Purification and properties of acyl/alkyl dihydroxyacetone-phosphate reductase from guinea pig liver peroxisomes. J. Biol. Chem. 265:8268–8274.PubMedGoogle Scholar
  20. de Vet E. C., Hilkes Y. H., Fraaije M. W., and van den Bosch H. (2000). Alkyl-dihydroxyacetonephosphate synthase. Presence and role of flavin adenine dinucleotide. J. Biol. Chem. 275:6276–6283.PubMedCrossRefGoogle Scholar
  21. de Vet E. C., IJlst L., Oostheim W., Dekker C., Moser H. W., van den Bosch H., and Wanders R. J. (1999). Ether lipid biosynthesis: Alkyl-dihydroxyacetonephosphate synthase protein deficiency leads to reduced dihydroxyacetonephosphate acyltransferase activities. J. Lipid Res. 40:1998–2003.PubMedGoogle Scholar
  22. de Vet E. C. and van den Bosch H. (2000). Alkyl-dihydroxyacetonephosphate synthase. Cell Biochem. Biophys. 32:117–121.PubMedCrossRefGoogle Scholar
  23. El Bassiouni E. A., Piantadosi C., and Snyder F. (1975). Metabolism of alkyldihydroxyacetone phosphate in rat brain. Biochim. Biophys. Acta 388:5–11.PubMedGoogle Scholar
  24. Engelmann B., Bräutigam C., and Thiery J. (1994). Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.PubMedCrossRefGoogle Scholar
  25. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  26. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  27. Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.Google Scholar
  28. Favrelière S., Stadelmann-Ingrand S., Huguet F., De Javel D., Piriou A., Tallineau C., and Durand G. (2000). Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol. Aging 21:653–660.CrossRefGoogle Scholar
  29. Fleming P. J. and Hajra A. K. (1977). 1-Alkyl-sn-glycero-3-phosphate:acyl-CoA acyltransferase in rat brain microsomes. J. Biol. Chem. 252:1663–1672.PubMedGoogle Scholar
  30. Getz G. S., Bartley W., Lurie D., and Notton B. M. (1968). The phospholipids of various sheep organs, rat liver and of their subcellular fractions. Biochim. Biophys. Acta 152:325–339.PubMedGoogle Scholar
  31. Ghosh M. K. and Hajra A. K. (1986). Subcellular distribution and properties of acyl/alkyl dihydroxyacetone phosphate reductase in rodent livers. Arch. Biochem. Biophys. 245:523–530.PubMedCrossRefGoogle Scholar
  32. Hajra A. K., Larkins L. K., Das A. K., Hemati N., Erickson R. L., and MacDougald O. A. (2000). Induction of the peroxisomal glycerolipid-synthesizing enzymes during differentiation of 3T3–L1 adipocytes–Role in triacylglycerol synthesis. J. Biol. Chem. 275:9441–9446.PubMedCrossRefGoogle Scholar
  33. Hoffman-Kuczynski B. and Reo N. V. (2004). Studies of myo-inositol and plasmalogen metabolism in rat brain. Neurochem. Res. 29:843–855.PubMedCrossRefGoogle Scholar
  34. Hoffman-Kuczynski B. and Reo N. V. (2005). Administration of myo-inositol plus ethanolamine elevates phosphatidylethanolamine plasmalogen in the rat cerebellum. Neurochem. Res. 30:47–60.PubMedCrossRefGoogle Scholar
  35. Horrocks L. A. (1972). Content, composition, and metabolism of mammalian and avian lipids that contain ether groups. In: Snyder F. (ed.), Ether Lipids: Chemistry and Biology. Academic Press, New York, pp. 177–272.Google Scholar
  36. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedCrossRefGoogle Scholar
  37. Horrocks L. A. and Sharma M. (1982). Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne J. N. and Ansell G. B. (eds.), Phospholipids, New Comprehensive Biochemistry, Vol. 4. Elsevier Biomedical Press, Amsterdam, pp. 51–93.CrossRefGoogle Scholar
  38. Horrocks L. A., VanRollins M., and Yates A. J. (1981). Lipid changes in the ageing brain. In: Davison A. N. and Thompson R. H. S. (eds.), The Molecular Basis of Neuropathology. Edward Arnold Ltd., London, pp. 601–630.Google Scholar
  39. Horrocks L. A., Yeo Y. K., Harder H. W., Mozzi R., and Goracci G. (1986). Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase. In: Greengard P. and Robison G. A. (eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 20. Raven Press, New York, pp. 263–292.Google Scholar
  40. Ide H. and Nakazawa Y. (1985). Phosphatidate phosphatase in rat liver: the relationship between the activities with membrane-bound phosphatidate and aqueous dispersion of phosphatidate. J Biochem. 97:45–54.PubMedGoogle Scholar
  41. Jamal Z., Martin A., Gomez-Munoz A., and Brindley D. N. (1991). Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J. Biol. Chem. 266:2988–2996.PubMedGoogle Scholar
  42. Jones C. L. and Hajra A. K. (1983). Solubilization and partial purification of dihydroxyacetone-phosphate acyltransferase from guinea pig liver. Arch. Biochem. Biophys. 226:155–165.PubMedCrossRefGoogle Scholar
  43. Kirschner D. A. and Ganser A. L. (1982). Myelin labeled with mercuric chloride. Asymmetric localization of phosphatidylethanolamine plasmalogen. J. Mol. Biol. 157:635–658.PubMedCrossRefGoogle Scholar
  44. Kofman O., Agam G., Shapiro J., and Spencer A. (1998). Chronic dietary inositol enhances locomotor activity and brain inositol levels in rats. Psychopharmacology (Berl) 139:239–242.CrossRefGoogle Scholar
  45. Korey S. R. and Orchen M. (1959). Plasmalogens of the nervous system. I. Deposition in developing rat brain and incorporation of 14C isotope from acetate and palmitate into the α, β-unsaturated ether chain. Arch. Biochem. Biophys. 83:381–389.PubMedCrossRefGoogle Scholar
  46. Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.CrossRefGoogle Scholar
  47. Liu D. L., Nagan N., Just W. W., Rodemer C., Thai T. P., and Zoeller R. A. (2005). Role of dihydroxyacetonephosphate acyltransferase in the biosynthesis of plasmalogens and nonether glycerolipids. J. Lipid Res. 46:727–735.PubMedCrossRefGoogle Scholar
  48. Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81:167–184.PubMedCrossRefGoogle Scholar
  49. Mancini A., Del Rosso F., Roberti R., Orvietani P., Coletti L., and Binaglia L. (1999). Purification of ethanolaminephosphotransferase from bovine liver microsomes. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:80–92.Google Scholar
  50. Marinetti G. V. and Crain R. C. (1978). Topology of amino phospholipids in the red cell membrane. J. Supramol. Struct. 8:191–213.CrossRefGoogle Scholar
  51. Mozzi R., Gramignani D., Andriamampandry C., Freysz L., and Massarelli R. (1989). Choline plasmalogen synthesis by the methylation pathway in chick neurons in culture. Neurochem. Res. 14:579–583.PubMedCrossRefGoogle Scholar
  52. Murphy R. C. (2001). Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: Antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14:463–472.PubMedCrossRefGoogle Scholar
  53. Nagan N., Hajra A. K., Das A. K., Moser H. W., Moser A., Lazarow P., Purdue P. E., and Zoeller R. A. (1997). A fibroblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: a novel defect in plasmalogen biosynthesis. Proc. Natl. Acad. Sci. USA 94:4475–4480.PubMedCrossRefGoogle Scholar
  54. Nagan N., Hajra A. K., Larkins L. K., Lazarow P., Purdue P. E., Rizzo W. B., and Zoeller R. A. (1998). Isolation of a Chinese hamster fibroblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: Use of a novel two-step selection protocol. Biochem. J. 332:273–279.PubMedGoogle Scholar
  55. Nagan N. and Zoeller R. A. (2001). Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 40:199–229.PubMedCrossRefGoogle Scholar
  56. Nonaka M., Kohmura E., Yamashita T., Yamauchi A., Fujinaka T., Yoshimine T., Tohyama M., and Hayakawa T. (1999). Kainic acid-induced seizure upregulates Na+/myo-inositol cotransporter mRNA in rat brain. Brain Res. Mol. Brain Res. 70:179–186.PubMedCrossRefGoogle Scholar
  57. Ofman R., Hettema E. H., Hogenhout E. M., Caruso U., Muijsers A. O., and Wanders R. J. (1998). Acyl-CoA:dihydroxyacetonephosphate acyltransferase: Cloning of the human cDNA and resolution of the molecular basis in rhizomelic chondrodysplasia punctata type 2. Hum. Mol. Genet. 7:847–853.PubMedCrossRefGoogle Scholar
  58. Ofman R., Hogenhout E. M., and Wanders R. J. (1999). Identification and characterization of the mouse cDNA encoding acyl-CoA:dihydroxyacetone phosphate acyltransferase. Biochim. Biophys. Acta 1439:89–94.PubMedGoogle Scholar
  59. Ofman R., Lajmir S., and Wanders R. J. A. (2001). Etherphospholipid biosynthesis and dihydroxyactetone-phosphate acyltransferase: Resolution of the genomic organization of the human GNPAT gene and its use in the identification of novel mutations. Biochem. Biophys. Res. Commun. 281:754–760.PubMedCrossRefGoogle Scholar
  60. Ofman R. and Wanders R. J. A. (1994). Purification of peroxisomal acyl-CoA:dihydroxyacetonephosphate acyltransferase from human placenta. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1206:27–34.CrossRefGoogle Scholar
  61. Paltauf F. (1994). Ether lipids in biomembranes. Chem. Phys. Lipids 74:101–139.PubMedCrossRefGoogle Scholar
  62. Patel N. C., DelBello M. P., Cecil K. M., Adler C. M., Bryan H. S., Stanford K. E., and Strakowski S. M. (2006). Lithium treatment effects on myo-inositol in adolescents with bipolar depression. Biol. Psychiat. 60:998–1004.PubMedCrossRefGoogle Scholar
  63. Patishi Y., Lubrich B., Berger M., Kofman O., Van Calker D., and Belmaker R. H. (1996). Differential uptake of myo-inositol in vivo into rat brain areas. Eur. Neuropsychopharmacol. 6:73–75.PubMedCrossRefGoogle Scholar
  64. Pettegrew J. W., Panchalingam K., Levine J., McClure R. J., Gershon S., and Yao J. K. (2001). Chronic myo-inositol increases rat brain phosphatidylethanolamine plasmalogen. Biol. Psychiat. 49:444–453.PubMedCrossRefGoogle Scholar
  65. Pike L. J., Han X. L., Chung K. N., and Gross R. W. (2001). Lipid rafts are enriched in plasmalogens and arachidonate-containing phospholipids and the expression of caveolin does not alter the lipid composition of these domains. FASEB J. 15:A20.Google Scholar
  66. Rodemer C., Thai T. P., Brugger B., Kaercher T., Werner H., Nave K. A., Wieland F., Gorgas K., and Just W. W. (2003). Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12:1881–1895.PubMedCrossRefGoogle Scholar
  67. Rouser G. and Yamamoto A. (1968). Curvilinear regression course of human brain lipid composition changes with age. Lipids 3:284–287.PubMedCrossRefGoogle Scholar
  68. Schlossman D. M. and Bell R. M. (1977). Microsomal sn-glycerol 3-phosphate and dihydroxyacetone phosphate acyltransferase activities from liver and other tissues. Evidence for a single enzyme catalizing both reactions. Arch. Biochem. Biophys. 182:732–742.PubMedCrossRefGoogle Scholar
  69. Shaldubina A., Buccafusca R., Johanson R. A., Agam G., Belmaker R. H., Berry G. T., and Bersudsky Y. (2007). Behavioural phenotyping of sodium-myo-inositol cotransporter heterozygous knockout mice with reduced brain inositol. Genes Brain Behav. 6:253–259.PubMedCrossRefGoogle Scholar
  70. Snyder F., Lee T.-C., and Wykle R. L. (1985). Ether-linked glycerolipids and their bioactive species: Enzymes and metabolic regulation. In: Martonosi A. N. (Ed.), The Enzymes of Biological Membranes. Plenum, New York, pp. 1–58.Google Scholar
  71. Stamps A. C., Elmore M. A., Hill M. E., Kelly K., Makda A. A., and Finnen M. J. (1997). A human cDNA sequence with homology to non-mammalian lysophosphatidic acid acyltransferases. Biochem. J. 326 (Pt 2):455–461PubMedGoogle Scholar
  72. Stoffel W., LeKim D., and Heyn G. (1970). Metabolism of sphingosine bases. XIV. Sphinganine (dihydrosphingosine), an effective donor of the alk-1-enyl chain of plasmalogens. Hoppe Seylers. Z. Physiol. Chem. 351:875–883.PubMedGoogle Scholar
  73. Suzuki T. (2002). Lipid rafts at postsynaptic sites: Distribution, function and linkage to postsynaptic density. Neurosci. Res. 44:1–9.PubMedCrossRefGoogle Scholar
  74. Thai T. P., Heid H., Rackwitz H. R., Hunziker A., Gorgas K., and Just W. W. (1997). Ether lipid biosynthesis: isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase. FEBS Lett. 420:205–211.PubMedCrossRefGoogle Scholar
  75. Toews A. D. and Horrocks L. A. (1976). Developmental and aging changes in protein concentration and 2 , 3,-cyclic nucleosidemonophosphate phosphodiesterase activity (EC 3.1.4.16) in human cerebral white and gray matter and spinal cord. J. Neurochem. 27:545–550.PubMedCrossRefGoogle Scholar
  76. Visser W. F., van Roermund C. W., Waterham H. R., and Wanders R. J. (2002). Identification of human PMP34 as a peroxisomal ATP transporter. Biochem. Biophys. Res. Commun. 299:494–497.PubMedCrossRefGoogle Scholar
  77. Wanders R. J. A. and Waterham H. R. (2006). Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta Mol. Cell Res. 1763:1707–1720.CrossRefGoogle Scholar
  78. Webber K. O. and Hajra A. K. (1993). Purification of dihydroxyacetone phosphate acyltransferase from guinea pig liver peroxisomes. Arch. Biochem. Biophys. 300:88–97.PubMedCrossRefGoogle Scholar
  79. Wells M. A. and Dittmer J. C. (1967). A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry 6:3169–3175.PubMedCrossRefGoogle Scholar
  80. West J., Tompkins C. K., Balantac N., Nudelman E., Meengs B., White T., Bursten S., Coleman J., Kumar A., Singer J. W., and Leung D. W. (1997). Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol. 16:691–701.PubMedGoogle Scholar
  81. Whitehouse P. J. (1997). Genesis of Alzheimer’s disease. Neurology 48:2–7.Google Scholar
  82. Williams S. D., Hsu F. F., and Ford D. A. (2000). Electrospray ionization mass spectrometry analyses of nuclear membrane phospholipid loss after reperfusion of ischemic myocardium. J. Lipid Res. 41:1585–1595.PubMedGoogle Scholar
  83. Zheng H., Duclos R. I. J., Smith C. C., Farber H. W., and Zoeller R. A. (2006). Synthesis and biological properties of the fluorescent ether lipid precursor 1-O-[9′–(1″–pyrenyl)]nonyl-sn-glycerol. J. Lipid Res. 47:633–642.PubMedCrossRefGoogle Scholar
  84. Zomer A. W. M., De Weerd W. F. C., Langeveld J., and van den Bosch H. (1993). Ether lipid synthesis: Purification and identification of alkyl dihydroxyacetone phosphate synthase from guinea-pig liver. Biochim. Biophys. Acta Lipids Lipid Metab. 1170:189–196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations