Perspective and Directions for Future Developments on Ether Lipids

Neural membranes contain glycerophospholipids, sphingolipids, cholesterol, and proteins. These lipids are asymmetrically distributed between the two leaflets of lipid bilayers (Ikeda et al., 2006; Yamaji-Hasegawa and Tsujimoto, 2006). Glycerophospholipids and sphingolipids contribute to the lipid asymmetry, while cholesterol and sphingolipids form lipid microdomains or lipid rafts. Glycerophospholipids are made up of glycerol backbone, fatty acids, phosphoric acid, and nitrogenous base. Depending on the substituent at the sn-1 position of glycerol moiety, glycerophospholipids are classified into two groups. One group is represented by glycerophospholipids that contain ester bond at the sn-1 position, and the other group is represented by glycerophospholipids that contain ether bond at the sn-1 position. Ester bond containing glycerophospholipids include phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns), whereas ether bond containing glycerophospholipids include plasmalogens, platelet-activating factor (PAF) and its analogs (Farooqui and Horrocks, 2001). PtdCho is mainly located in the outer leaflet, whereas PtdSer, PtdEtn, and PtdIns are mainly located in the inner leaflet (Farooqui and Horrocks, 2007; Farooqui and Horrocks, 2008). Among ether lipids, choline plasmalogen (PlsCho) is located in the outer leaflet, whereas ethanolamine plasmalogen is mainly associated with the inner leaflet.


Positron Emission Tomography Lipid Raft Lipid Mediator Ether Lipid Sphingolipid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.PubMedGoogle Scholar
  2. Alcon S., Morales S., Camello P. J., and Pozo M. J. (2002). Contribution of different phospholipases and arachidonic acid metabolites in the response of gallbladder smooth muscle to cholecystokinin. Biochem. Pharmacol. 64:1157–1167.PubMedCrossRefGoogle Scholar
  3. Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.CrossRefGoogle Scholar
  4. Bae K., Longobardi L., Karasawa K., Malone B., Inoue T., Aoki J., Arai H., Inoue K., and Lee T. (2000). Platelet-activating factor (PAF)-dependent transacetylase and its relationship with PAF acetylhydrolases. J. Biol. Chem. 275:26704–26709.PubMedGoogle Scholar
  5. Bernatchez P. N., Tremblay F., Rollin S., Neagoe P. E., and Sirois M. G. (2003). Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: Role in cellular migration. J. Cell. Biochem. 90:719–731.PubMedCrossRefGoogle Scholar
  6. Bogdanovic N., Bretillon L., Lund E. G., Diczfalusy U., Lannfelt L., Winblad B., Russell D. W., and Björkhem I. (2001). On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 314:45–48.PubMedCrossRefGoogle Scholar
  7. Bosetti F., Bell J. M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.PubMedCrossRefGoogle Scholar
  8. Butterfield D. A., Perluigi M., and Sultana R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol. 545:39–50.PubMedCrossRefGoogle Scholar
  9. Chalfant C. E. and Spiegel S. (2005). Sphingosine 1-phosphate and ceramide 1-phosphate: Expanding roles in cell signaling. J. Cell Sci. 118:4605–4612.PubMedCrossRefGoogle Scholar
  10. Chang J. Y., Chavis J. A., Liu L. Z., and Drew P. D. (1998). Cholesterol oxides induce programmed cell death in microglial cells. Biochem. Biophys. Res. Commun. 249:817–821.PubMedCrossRefGoogle Scholar
  11. Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.PubMedCrossRefGoogle Scholar
  12. Cuzzocrea S. and Salvemini D. (2007). Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 71:290–297.PubMedCrossRefGoogle Scholar
  13. Dennis E. A., Brown H. A., Deems R. A., Glass C. K., Merrill A. H. J., Murphy R. C., Raetz C. R. H., Shaw W., Subramaniam S., Russell D. W., VanNieuwenhze M. S., White S. H., Witztum J. L., and Wooley J. (2006). The LIPID MAPS approach to lipidomics. In: Feng L. and Prestwich G. D. (eds.), Functional Lipidomics. CRC, Boca Raton, FL, pp. 1–15.Google Scholar
  14. Esposito G., Giovacchini G., Der M., Liow J. S., Bhattacharjee A. K., Ma K., Herscovitch P., Channing M., Eckelman W. C., Hallett M., Carson R. E., and Rapoport S. I. (2007). Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. Neuroimage 34:1342–1351.PubMedCrossRefGoogle Scholar
  15. Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. 6:177–184.Google Scholar
  16. Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999). Inhibitors of intracellular phospholipase A2 activity: Their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49:139–153.PubMedCrossRefGoogle Scholar
  17. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedCrossRefGoogle Scholar
  18. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  19. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedCrossRefGoogle Scholar
  20. Farooqui A. A., Farooqui T., and Horrocks L. A. (2002). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp. 147–158.CrossRefGoogle Scholar
  21. Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.Google Scholar
  22. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedCrossRefGoogle Scholar
  23. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedCrossRefGoogle Scholar
  24. Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders. Springer, Berlin Heidelberg, New York, pp. 1–394.Google Scholar
  25. Farooqui A. A. and Horrocks L. A. (2008). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry Lajtha, A. In Press Springer, Berlin Heidelberg, New York.Google Scholar
  26. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.PubMedCrossRefGoogle Scholar
  27. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedCrossRefGoogle Scholar
  28. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, Berlin Heidelberg New York.Google Scholar
  29. Fonteh A.N., Harrington R.J., Huhmer A.F., Biringer R.G., Riggins J.N., Harrington M.G. (2006). Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis. Markers 22:39–64.PubMedGoogle Scholar
  30. Forrester J. S., Milne S. B., Ivanova P. T., and Brown H. A. (2004). Computational lipidomics: A multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Molec. Pharmacol. 65:813–821.CrossRefGoogle Scholar
  31. Gonzalez-Alegre P. (2007). Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol. Ther. 114:34–55.PubMedCrossRefGoogle Scholar
  32. Grimm M. O. W., Grimm H. S., Pätzold A. J., Zinser E. G., Halonen R., Duering M., Tschäpe J. A., De Strooper B., Müller U., Shen J., and Hartmann T. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat. Cell Biol. 7:1118–1123.PubMedCrossRefGoogle Scholar
  33. Gross R. W., Jenkins C. M., Yang J. Y., Mancuso D. J., and Han X. L. (2005). Functional lipidomics: The roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat. 77:52–64.PubMedCrossRefGoogle Scholar
  34. Guan X. L., He X., Ong W. Y., Yeo W. K., Shui G. H., and Wenk M. R. (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J. 20:1152–1161.PubMedCrossRefGoogle Scholar
  35. Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J. (2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease–Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural Transm. 109:837–855.PubMedCrossRefGoogle Scholar
  36. Han X. L. (2007). Neurolipidomics: Challenges and developments. Front. Biosci. 12:2601–2615.PubMedCrossRefGoogle Scholar
  37. Han X. L. and Gross R. W. (2005). Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics 2:253–264.PubMedCrossRefGoogle Scholar
  38. He X., Jenner A.M., Ong W.Y., Farooqui A.A., and Patel S.C. (2006) Lovasatatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J. Neuropath. Exp. Neurol. 65:652–663.PubMedCrossRefGoogle Scholar
  39. Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  40. Hovland A. R., Nahreini P., Andreatta C. P., Edwards-Prasad J., and Prasad K. N. (2001). Identifying genes involved in regulating differentiation of neuroblastoma cells. J. Neurosci. Res. 64:302–310.CrossRefGoogle Scholar
  41. Ikeda M., Kihara A., and Igarashi Y. (2006). Lipid asymmetry of the eukaryotic plasma membrane: Functions and related enzymes. Biol. Pharm. Bull. 29:1542–1546.PubMedCrossRefGoogle Scholar
  42. Ivanova P. T., Milne S. B., Forrester J. S., and Brown H. A. (2004). Lipid arrays: New tools in the understanding of membrane dynamics and lipid signaling. Molec. Interventions 4:86–96.CrossRefGoogle Scholar
  43. Karasawa K., Qiu X., and Lee T. (1999). Purification and characterization from rat kidney membranes of a novel platelet-activating factor (PAF)-dependent transacetylase that catalyzes the hydrolysis of PAF, formation of PAF analogs, and C2-ceramide. J. Biol. Chem. 274:8655–8661.PubMedCrossRefGoogle Scholar
  44. Kihara A. and Igarashi Y. (2004). Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol. Biol. Cell 15:4949–4959.PubMedCrossRefGoogle Scholar
  45. Kirsch C., Eckert G. P., and Mueller W. E. (2002). Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides. Amyloid 9:149–159.PubMedGoogle Scholar
  46. Koletzko B., Agostoni C., Carlson S. E., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., and Willatts P. (2001). Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr. 90:460–464.PubMedCrossRefGoogle Scholar
  47. Kölsch H., Lütjohann D., Tulke A., Björkhem I., and Rao M. L. (1999). The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res. 818:171–175.PubMedCrossRefGoogle Scholar
  48. Kondo M., Imahori Y., Mori S., and Nakajima K. (2002). Inositol phospholipid metabolism in Alzheimer’s disease - A positron emission tomographic study. In: DeLaTorre J. C., Kalaria R., Nakajima K., and Nagata K. (eds.), Alzheimer’s Disease: Vascular Etiology and Pathology. Annals of the New York Academy of Sciences New York Acad Sciences, New York, pp. 416–422.Google Scholar
  49. Lang P. A., Kempe D. S., Tanneur V., Eisele K., Klarl B. A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S. M., Lang F., and Wieder T. (2005). Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243.PubMedCrossRefGoogle Scholar
  50. Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.PubMedCrossRefGoogle Scholar
  51. Lee S. H., Williams M. V., and Blair I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77:141–157.PubMedCrossRefGoogle Scholar
  52. Lee T. C., Ou M. C., Shinozaki K., Malone B., and Snyder F. (1996). Biosynthesis of N-acetylsphingosine by platelet-activating factor: Sphingosine CoA-independent transacetylase in HL-60 cels. J. Biol. Chem. 271:209–217.PubMedCrossRefGoogle Scholar
  53. Lizard G., Miguet C., Bessède G., Monier S., Gueldry S., Neel D., and Gambert P. (2000). Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28:743–753.PubMedCrossRefGoogle Scholar
  54. Lu Y., Hong S., Gotlinger K., and Serhan C. N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. ScientificWorldJournal 6:589–614.PubMedCrossRefGoogle Scholar
  55. Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.PubMedCrossRefGoogle Scholar
  56. Masters C. L., Cappai R., Barnham K. J., and Villemagne V. L. (2006). Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. J. Neurochem. 97:1700–1725.PubMedCrossRefGoogle Scholar
  57. Milne S., Ivanova P., Forrester J., and Brown H. A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92–103.PubMedCrossRefGoogle Scholar
  58. Nelson T. J. and Alkon D. L. (2005). Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem. 280:7377–7387.PubMedCrossRefGoogle Scholar
  59. Nodai A., Machida T., Izumi S., Hamaya Y., Kohno T., Igarashi Y., Iizuka K., Minami M., and Hirafuji M. (2007). Sphingosine 1-phosphate induces cyclooxygeriase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80:1768–1776.PubMedCrossRefGoogle Scholar
  60. Nomikos T. N., Iatrou C., and Demopoulos C. A. (2003). Acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity in cortical and medullary human renal tissue. Eur. J. Biochem. 270:2992–3000.PubMedCrossRefGoogle Scholar
  61. Park D. S., Obeidat A., Giovanni A., and Greene L. A. (2000). Cell cycle regulators in neuronal death evoked by excitotoxic stress: Implications for neurodegeneration and its treatment. Neurobiol. Aging 21:771–781.PubMedCrossRefGoogle Scholar
  62. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedCrossRefGoogle Scholar
  63. Piomelli D. (2005). The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat. 77:23–34.PubMedCrossRefGoogle Scholar
  64. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedCrossRefGoogle Scholar
  65. Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16:243–261.PubMedCrossRefGoogle Scholar
  66. Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.PubMedCrossRefGoogle Scholar
  67. Reiss A. B., Siller K. A., Rahman M. M., Chan E. S. L., Ghiso J., and De Leon M. J. (2004). Cholesterol in neurologic disorders of the elderly: Stroke and Alzheimer’s disease. Neurobiol. Aging 25:977–989.PubMedCrossRefGoogle Scholar
  68. Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.PubMedCrossRefGoogle Scholar
  69. Serhan C. N. (2005). Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77:4–14.PubMedCrossRefGoogle Scholar
  70. Shindou H., Hishikawa D., Nakanishiu H., Harayama T., Ishii S., Taguchi R., and Shimizu T. (2007). A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells–Cloning and characterization of acetyl-CoA:lyso-PAF acetyltransferase. J. Biol. Chem. 282:6532–6539.PubMedCrossRefGoogle Scholar
  71. Simons K. and Ikonen E. (2000). How cells handle cholesterol. Science 290:1721–1726.PubMedCrossRefGoogle Scholar
  72. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.PubMedGoogle Scholar
  73. Stahelin R. V., Subramanian P., Vora M., Cho W., and Chalfant C. E. (2007). Ceramide-1-phosphate binds group IVA cytosolic phospholipase a2 via a novel site in the C2 domain. J. Biol. Chem. 282:20467–20474.PubMedCrossRefGoogle Scholar
  74. Thakker D. R., Hoyer D., and Cryan J. F. (2006). Interfering with the brain: Use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol. Ther. 109:413–438.PubMedCrossRefGoogle Scholar
  75. Thomas D. M., Francescutti-Verbeem D. M., and Kuhn D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J. 20:515–517.PubMedGoogle Scholar
  76. Vaena de Avalos S., Jones J. A., and Hannun Y. A. (2004). Ceramides. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 135–167.Google Scholar
  77. Van Overloop H., Denizot Y., Baes M., and Van Veldhoven P. P. (2007). On the presence of C2-ceramide in mammalian tissues: possible relationship to ether phospholipids and phosphorylation by ceramide kinase. Biol. Chem. 388:315–324.PubMedCrossRefGoogle Scholar
  78. Vigh L., Escriba P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horvath I., and Harwood J. L. (2005). The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 44:303–344.PubMedCrossRefGoogle Scholar
  79. Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J. Lipid Res. 44: 441–449.PubMedCrossRefGoogle Scholar
  80. Watanabe, T., Akiguchi, I., Yagi, H., Onishi, K., Kawasaki, T., Shiino, A., and Inubushi, T. (2002) Proton magnetic resonance spectroscopy and white matter hyperintensities on magnetic resonance imaging in patients with Alzheimer’s disease. Ann. N. Y. Acad. Sci. 977:423–429.PubMedCrossRefGoogle Scholar
  81. Wenk M. R. (2005). The emerging field of lipidomics. Nat. Rev. Drug Discov. 4:594–610.PubMedCrossRefGoogle Scholar
  82. Xia X. G., Zhou H., and Xu Z. (2005). Promises and challenges in developing RNAi as a research tool and therapy for neurodegenerative diseases. Neurodegener. Dis. 2:220–231.PubMedCrossRefGoogle Scholar
  83. Yamaji-Hasegawa A. and Tsujimoto M. (2006). Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29:1547–1553.PubMedCrossRefGoogle Scholar
  84. Yanagisawa K. (2002). Cholesterol and pathological processes in Alzheimer’s disease. J. Neurosci. Res. 70:361–366.PubMedCrossRefGoogle Scholar
  85. Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.PubMedCrossRefGoogle Scholar
  86. Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J. (1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.PubMedCrossRefGoogle Scholar
  87. Yu Z. F., Nikolova-Karakashian M., Zhou D. H., Cheng G. J., Schuchman E. H., and Mattson M. P. (2000). Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15:85–97.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations