Skip to main content

Antitumor ether lipids (AEL) are structural analogs of PAF, but lack the readily hydrolyzable ester substituent at the sn-2 position of glycerol moiety (Fig. 11.1). They contain a long carbon chain at the sn-1 and a short chain at the sn-2 position. At the sn-3 position, phosphocholine is the head group. Examples of common AEL are Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, Et-18-OCH3); Ilmofosine; Miltefosine (hexadecylphosphocholine, HePC); ilmofosine (BM 41.440, 1-hexadecylthio-2-methoxymethyl-rac-glycero- 3-phosphocholine); and SR1 62-834 ( (+-)-2-(Hydroxy[tetrahydro-2-(octadecyloxy) methylfuran-2-yl] methoxyl phosphinyloxy)-N,N,N-trimethylethaniminium hydroxide). HePC lacks the glycerol backbone. Alkyl-phosphocholine and alkyl-glycerophosphocholine derivatives as well as aza-substituted alkylglycerophosphocholines have also been synthesized. These derivatives include 1-methoxy-2-N,N-methyl-octadecylamino-propyloxyphosphorylcholine (BN 52205), 1-methoxy-3-N,N-methyl-octadecylamino-propyloxyphosphorylcholine (BN 52207), 1-N,N-methyl-octadecylamino-2-methoxy-propyloxyphosphorylcholine (BN 52211) (Fig. 11.2). Besides the above-mentioned anticancer compounds, glycosidated phospholipids such as 2-glucophosphatidylcholine (1-stearoyl-2-O-α-dglucopyranoside-sn-glycero-3-phosphocholine) and Glc-PAF (1-O-octadecyl- 2-O-α-d-glucopyranosyl-sn-2-glycero-3-phosphatidylcholine) and other alkylphosphocholines have been synthesized (Fig. 11.3). All these compounds inhibit cell proliferation in HaCaT cells (Fischer et al., 2006). The substitution of myo-inositol, in place of α-d-glucose, in the sn-2 position of the glycerol moiety leads to two diastereomeric 1-O-octadecyl-2-O-(2-(myo-inositolyl)-ethyl)-snglycero- 3-(R/S)-phosphatidylcholines (Ino-C2-PAF). The inositol-containing PAF enhances the antiproliferative capacity (IC50 = 1.8 μM) and reduces the cytotoxicity relative to Glc-PAF (LC50 = 15μM). AEL are taken up in the tumor cell more rapidly than normal cells. Several mechanisms have been proposed for AEL uptake. They include passive diffusion (Kelley et al 1993), internalization through endocytosis (Bazill and Dexter, 1990), and active uptake through a carrier (Hanson et al., 2003; Perez-Victoria et al., 2003; Ménez et al., 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur G. and Bittman R. (1998). The inhibition of cell signaling pathways by antitumor ether lipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1390:85–102.

    Article  CAS  Google Scholar 

  • Bador H., Morelis R., and Louisot P. (1983). Biochemical evidence for the role of alkyl- lysophospholipids on liver sialyltransferase. Int. J. Biochem. 15:1137–1142.

    Article  PubMed  CAS  Google Scholar 

  • Bazill G. W. and Dexter T. M. (1990). Role of endocytosis in the action of ether lipids on WEHI-3B, HL60, and FDCP-mix A4 cells. Cancer Res. 50:7505–7512.

    PubMed  CAS  Google Scholar 

  • Berggren M. I., Gallegos A., Dressler L. A., Modest E. J., and Powis G. (1993). Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res. 53:4297–4302.

    PubMed  CAS  Google Scholar 

  • Berkovic D. (1998). Cytotoxic etherphospholipid analogues. Gen. Pharmacol. 31:511–517.

    Article  PubMed  CAS  Google Scholar 

  • Berkovic D., Luders S., Goeckenjan M., Hiddemann W., and Fleer E. A. (1997). Differential regulation of phospholipase A2 in human leukemia cells by the etherphospholipid analogue hexadecylphosphocholine. Biochem. Pharmacol. 53:1725–1733.

    Article  PubMed  CAS  Google Scholar 

  • Botzler C., Ellwart J., Gunther W., Eissner G., and Multhoff G. (1999). Synergistic effects of heat and ET-18-OCH3 on membrane expression of hsp70 and lysis of leukemic K562 cells. Exp Hematol. 27:470–478.

    Article  PubMed  CAS  Google Scholar 

  • Carballeira N. M. (2002). New advances in the chemistry of methoxylated lipids. Prog. Lipid Res. 41:437–456.

    Article  PubMed  CAS  Google Scholar 

  • Cardile V., Jiang X., Renis M., and Bindoni M. (1996). Effects of ether lipid 1-O-octadecyl-2-methoxy-rac-glycero-3-phosphocholine and its analogs PAF and CPAF on the release of nitric oxide in primary cultures of rat astrocytes. Brain Res. 715:98–103.

    Article  PubMed  CAS  Google Scholar 

  • Conesa-Zamora P., Mollinedo F., Corbalán-García S., and Gómez-Fernández J. C. (2005). A comparative study of the effect of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine and some homologous compounds on PKCα and PKCε. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1687:110–119.

    Article  CAS  Google Scholar 

  • Daniel L.W., Civoli F., Rogers M.A., Smitherman P.K., Raju P.A., Roederer M. (1995). ET-18-OCH3 inhibits nuclear factor-kappa B activation by 12-O-tetradecanoylphorbol-13-acetate but not by tumor necrosis factor-alpha or interleukin 1 alpha. Cancer Res. 55:4844–4849.

    PubMed  CAS  Google Scholar 

  • Dell’Albani P., Condorelli D.F., Mudo G., Amico C., Bindoni M., and Belluardo N. (1993). Platelet-activating factor and its methoxy-analogue ET-18-OCH3 stimulate immediate early gene expression in rat astroglial cultures. Neurochem. Int. 22:567–574.

    Article  Google Scholar 

  • Diomede L., Bianchi R., Modest E.J., Piovani B., Bubba F., and Salmona M. (1992). Modulation of ATPase activity by cholesterol and synthetic ether lipids in leukemic cells. Biochem Pharmacol. 43:803–807.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A., Muller D., Zimmermann-Kordmann M., Kleuser B., Mickeleit M., Laabs S., Lowe W., Cantagrel F., Reutter W., and Danker K. (2006). The ether lipid inositol-C2-PAF is a potent inhibitor of cell proliferation in HaCaT cells. Chembiochem 7:441–449.

    Article  PubMed  CAS  Google Scholar 

  • Gajate C., Del Canto-Janez E., Acuna Au, Veldman R.J., and Molinedo F. (2004). Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis.J. Exp. Med. 200:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Gajate C., Santos-Beneit A.M., Macho A., Lazaro M., Hernandez-De Rojas A., Modolell M., Munoz E., and Mollinedo F. (2000). Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. Int. J. Cancer 86:208–218.

    Article  PubMed  CAS  Google Scholar 

  • Gajate C. and Molinedo F. (2005). Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280:11641–11647.

    Article  PubMed  CAS  Google Scholar 

  • Gajate C. and Mollinedo F. (2007). Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719.

    Article  PubMed  CAS  Google Scholar 

  • Grosman N. (2001). Similar effects of ether phospholipids, PAF and lyso-PAF on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int. Immunopharmacol. 1:1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Hanson P.K., Malone L., Birchmore J., and Nichols J. (2003). Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J. Biol. Chem. 278:36041–36050.

    Article  PubMed  CAS  Google Scholar 

  • Helfman D.M., Barnes K.C., Kinkade J.M., Jr., Vogler W.R., Shoji M., and Kuo J.F. (1983). Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res. 43:2955–2961.

    PubMed  CAS  Google Scholar 

  • Heesebeen E.C., Verdonck L.F., Hermans S.W.G., Van Heugten H.G., Staal G.E.J., and Rijksen G. (1991). Alkyllysophospholipid ET-18-OCH3 acts as an activator of protein kinase C in HL-60 cells. FEBS Lett. 290:231–234.

    Article  Google Scholar 

  • Herrmann D.B.J. and Neumann H.A. (1986). Cytotoxic ether phospholipids. Different affinities to lysophosphocholine acyltransferases in sensitive and resistant cells. J. Biol. Chem. 261:7742–7747.

    PubMed  CAS  Google Scholar 

  • Jiménez-López J. M., Carrasco M. P., Segovia J. L., and Marco C. (2004). Hexadecylphosphocholine inhibits phosphatidylcholine synthesis via both the methylation of phosphatidylethanolamine and CDP-choline pathways in HepG2 cells. Int. J. Biochem. Cell Biol. 36:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Kelley E.E., Modest E.J., and Burns C.P. (1993). Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem. Pharmacol. 45:2435–2439.

    Article  PubMed  CAS  Google Scholar 

  • Kosano H. and Takatani O. (1988). Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res. 48:6033–6036.

    PubMed  CAS  Google Scholar 

  • Kosano H. and Takatani O. (1989). Inhibition by an alkyl-lysophospholipid of the uptake of epidermal growth factor in human breast cancer cell lines in relation to epidermal growth factor internalization. Cancer Res. 49:2868–2870.

    PubMed  CAS  Google Scholar 

  • Kosano H. and Takatani O. (1990). Increase of transferrin binding induced by an alkyl- lysophospholipid in breast cancer cells. J. Lipid Mediat. 2:117–121.

    PubMed  CAS  Google Scholar 

  • Kosano H., Yasutomo Y., Kugai N., Nagata N., Inagaki H., Tanaka S., and Takatani O. (1990). Inhibition of estradiol uptake and transforming growth factor alpha secretion in human breast cancer cell line MCF-7 by an alkyl-lysophospholipid. Cancer Res. 50:3172–3175.

    PubMed  CAS  Google Scholar 

  • Lozano J., Berra E., Municio M.M., Diaz-Meco M.T., Domiguez I., Sanz L., and Moscat J. (1994). Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269:19200–19202.

    PubMed  CAS  Google Scholar 

  • Lucas L., Hernandez-Alcoceba R., Penalva V., and Lacal J. C. (2001). Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene 20:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  • Ménez C., Buyse M., Farinotti R., and Barratt G. (2007). Inward translocation of the phospholipid analogue miltefosine across Caco-2 cell membranes exhibits characteristics of a carrier- mediated process. Lipids 42:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Mollinedo F. (2007). Antitumour ether liquids: Proapoptotic agents with multiple therapeutic indications. Expert Opin. Ther. Patents 17:385–405.

    Article  CAS  Google Scholar 

  • Mollinedo F., Gajate C., Martin-Santamaria S., and Gago F. (2004). ET-18-OCH3 (Edelfosine): A selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr. Medicinal Chem. 11:3163–3184.

    CAS  Google Scholar 

  • Mollinedo F., Gajate C., and Modolell M. (1994). The ether lipid 1-octadecyl-2-methyl-rac- glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem. J. 302:325–329.

    PubMed  CAS  Google Scholar 

  • Mollinedo F. and Gajate C. (2006). Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug. Resist. Updat. 9:51–73.

    Article  PubMed  CAS  Google Scholar 

  • Na H.K., Inoue H., Surh Y.J. (2005). ET-18-O-CH3-induced apoptosis is causally linked to COX-2 upregulation in H-ras transformed human breast epithelial cells. FEBS Lett. 579:6279–6287.

    Article  PubMed  CAS  Google Scholar 

  • Nicola N.A. (1989). Hemopoietic cell growth factors and their receptors. Annu. Rev. Biochem. 58:45–77.

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk T. and Lowenstein J.M. (1993). Inhibition of phospholipase C delta by hexadecylphosphorylcholine and lysophospholipids with antitumor activity. Biochem. Pharmacol. 45:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Rerez-Victoria F.J., Gamarro F., Ouellette M., and Castanys S. (2003). Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278:49965–49971.

    Article  Google Scholar 

  • Powis G., Seewald M.J., Gratas C., Melder D., Riebow J., and Modest E.J. (1992). Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res. 52:2835–2840.

    PubMed  CAS  Google Scholar 

  • Pushkareva M.Y., Wannberg S.L., Janoff A.S., and Mayhew E. (2000). Increased cell-surface receptor expression on U-937 cells induced by 1-O-octadecyl-2-O-methyl-sn-glycero-3- phosphocholine. Cancer Immunol. Immunother. 48:569–578.

    Article  PubMed  CAS  Google Scholar 

  • Rakotomanga M., Blanc S., Gaudin K., Chaminade P., and Loiseau P.A. (2007). Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. 51:1425–1430.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter G.A., Zerp S.F., Bartelink H., van Blitterswijk W.J., and Verheij M. (1999). Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 59:2457–2463.

    PubMed  CAS  Google Scholar 

  • Ruiter G.A., Zerp S.F., Bartelink H., van Blitterswijk W.J., and Verheij M. (2003). Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Salari H., Dryden P., Dovenport R., Howard S., Jones K., and Bittman R. (1992). Inhibition of protein kinase C by ether-linked lipids is not correlated with their antineoplastic activity on WEHI-3B and R6X–B15 cells. Biochim. Biophys. Acta 1134: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Samadder P., Richards C., Bittman R., Bhullar R.P., and Arthur G. (2003). The antitumor ether lipid 1-Q-octadecyl-2-O-methyl-rac-glycerophosphocholine (ET-18-OCH3) inhibits the association between Ras and Raf-1. Anticancer Res. 3B:2291–2295.

    Google Scholar 

  • Samadder P., Bittman R., Byun H.S., and Arthur G. (2004). Synthesis and use of novel ether phospholipid enantiomers to probe the molecular basis of the antitumor effects of alkyllysophospholipids: correlation of differential activation of c-Jun NH2-terminal protein kinase with antiproliferative effects in neuronal tumor cells. J Med Chem. 47: 2710–2713.

    Article  PubMed  CAS  Google Scholar 

  • Schallier D.C., Bruyneel E.A., Storme G.A., Hilgard P., Mareel M.M. (1991). Antiinvasive activity of hexadecylphosphocholine in vitro. Anticancer Res. 11:1285–1292.

    PubMed  CAS  Google Scholar 

  • Shoji M., Fukuhara T., Winton E.F., Berdel W.E., and Vogler W.R. (1994). Different mechanisms of inhibition by alkyl-lysophospholipid and phorbol ester of granulocyte-macrophage colony-stimulating factor binding to human leukemic cell lines. Exp. Hematol. 22:13–18.

    PubMed  CAS  Google Scholar 

  • Shmelzer Z., Haddad N., Admon E., Pessach I., Leto T. L., Eitan-Hazan Z., Hershfinkel M., and Levy R. (2003). Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J. Cell. Biol. 162:683–692.

    Article  PubMed  CAS  Google Scholar 

  • Tronchere H., Terce F., Record M., Ribbes G., and Chap H. (1991). Modulation of CTP:phosphocholine cytidylyltransferase translocation by oleic acid and the antitumoral alkylphospholipid in HL-60 cells. Biochem. Biophys. Res. Commun. 176:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Uberall F., Oberhuber H., Maly K., Zaknun J., Demuth L., and Grunicke H.H. (1991). Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 51:807–812.

    PubMed  CAS  Google Scholar 

  • Unger C., Maniera T., Kaufmann-Kolle P., and Eibl H. (1998). In vivo antileishmanial activity of hexadecylphosphocholine and other alkylphosphocholines. Drugs Today 34(Suppl. F):133–140.

    CAS  Google Scholar 

  • van der Luit A.H., Budde M., Ruurs P., Verheij M., and Van Blitterswijk W.J. (2002). Alkyl- lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J. Biol. Chem. 277:39541–39547.

    Article  PubMed  CAS  Google Scholar 

  • Wieder T., Zhang Z., Geilen C.E., Orfaros A.E., Giuliano A.E., and Cabot M.C. (1996). The antitumor phospholipid analog, hexadecylphosphocholine, activates cellular phospholipase D. Cancer Lett. 100:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Zheng B., Oishi K., Shoji M., Eible H., Berdel W.E., Hajdu J., Vogler W.R., and Kou J.F. (1990). Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues. Cancer Res. 50:3025–3031.

    PubMed  CAS  Google Scholar 

  • Zhou X., Lu X., Richard C., Xiong W., Litchfield D.W., Bittman R., and Arthur G. (1996). 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J. Clin. Invest. 98:937–944.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Biochemical Effects of Nonphysiological Antitumor Ether Lipids. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_11

Download citation

Publish with us

Policies and ethics