Biochemical Effects of Nonphysiological Antitumor Ether Lipids

Antitumor ether lipids (AEL) are structural analogs of PAF, but lack the readily hydrolyzable ester substituent at the sn-2 position of glycerol moiety (Fig. 11.1). They contain a long carbon chain at the sn-1 and a short chain at the sn-2 position. At the sn-3 position, phosphocholine is the head group. Examples of common AEL are Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, Et-18-OCH3); Ilmofosine; Miltefosine (hexadecylphosphocholine, HePC); ilmofosine (BM 41.440, 1-hexadecylthio-2-methoxymethyl-rac-glycero- 3-phosphocholine); and SR1 62-834 ( (+-)-2-(Hydroxy[tetrahydro-2-(octadecyloxy) methylfuran-2-yl] methoxyl phosphinyloxy)-N,N,N-trimethylethaniminium hydroxide). HePC lacks the glycerol backbone. Alkyl-phosphocholine and alkyl-glycerophosphocholine derivatives as well as aza-substituted alkylglycerophosphocholines have also been synthesized. These derivatives include 1-methoxy-2-N,N-methyl-octadecylamino-propyloxyphosphorylcholine (BN 52205), 1-methoxy-3-N,N-methyl-octadecylamino-propyloxyphosphorylcholine (BN 52207), 1-N,N-methyl-octadecylamino-2-methoxy-propyloxyphosphorylcholine (BN 52211) (Fig. 11.2). Besides the above-mentioned anticancer compounds, glycosidated phospholipids such as 2-glucophosphatidylcholine (1-stearoyl-2-O-α-dglucopyranoside-sn-glycero-3-phosphocholine) and Glc-PAF (1-O-octadecyl- 2-O-α-d-glucopyranosyl-sn-2-glycero-3-phosphatidylcholine) and other alkylphosphocholines have been synthesized (Fig. 11.3). All these compounds inhibit cell proliferation in HaCaT cells (Fischer et al., 2006). The substitution of myo-inositol, in place of α-d-glucose, in the sn-2 position of the glycerol moiety leads to two diastereomeric 1-O-octadecyl-2-O-(2-(myo-inositolyl)-ethyl)-snglycero- 3-(R/S)-phosphatidylcholines (Ino-C2-PAF). The inositol-containing PAF enhances the antiproliferative capacity (IC50 = 1.8 μM) and reduces the cytotoxicity relative to Glc-PAF (LC50 = 15μM). AEL are taken up in the tumor cell more rapidly than normal cells. Several mechanisms have been proposed for AEL uptake. They include passive diffusion (Kelley et al 1993), internalization through endocytosis (Bazill and Dexter, 1990), and active uptake through a carrier (Hanson et al., 2003; Perez-Victoria et al., 2003; Ménez et al., 2007).


U937 Cell Lipid Raft HaCaT Cell Human Breast Cancer Cell Line Ether Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur G. and Bittman R. (1998). The inhibition of cell signaling pathways by antitumor ether lipids. Biochim. Biophys. Acta Lipids Lipid Metab. 1390:85–102.CrossRefGoogle Scholar
  2. Bador H., Morelis R., and Louisot P. (1983). Biochemical evidence for the role of alkyl- lysophospholipids on liver sialyltransferase. Int. J. Biochem. 15:1137–1142.PubMedCrossRefGoogle Scholar
  3. Bazill G. W. and Dexter T. M. (1990). Role of endocytosis in the action of ether lipids on WEHI-3B, HL60, and FDCP-mix A4 cells. Cancer Res. 50:7505–7512.PubMedGoogle Scholar
  4. Berggren M. I., Gallegos A., Dressler L. A., Modest E. J., and Powis G. (1993). Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res. 53:4297–4302.PubMedGoogle Scholar
  5. Berkovic D. (1998). Cytotoxic etherphospholipid analogues. Gen. Pharmacol. 31:511–517.PubMedCrossRefGoogle Scholar
  6. Berkovic D., Luders S., Goeckenjan M., Hiddemann W., and Fleer E. A. (1997). Differential regulation of phospholipase A2 in human leukemia cells by the etherphospholipid analogue hexadecylphosphocholine. Biochem. Pharmacol. 53:1725–1733.PubMedCrossRefGoogle Scholar
  7. Botzler C., Ellwart J., Gunther W., Eissner G., and Multhoff G. (1999). Synergistic effects of heat and ET-18-OCH3 on membrane expression of hsp70 and lysis of leukemic K562 cells. Exp Hematol. 27:470–478.PubMedCrossRefGoogle Scholar
  8. Carballeira N. M. (2002). New advances in the chemistry of methoxylated lipids. Prog. Lipid Res. 41:437–456.PubMedCrossRefGoogle Scholar
  9. Cardile V., Jiang X., Renis M., and Bindoni M. (1996). Effects of ether lipid 1-O-octadecyl-2-methoxy-rac-glycero-3-phosphocholine and its analogs PAF and CPAF on the release of nitric oxide in primary cultures of rat astrocytes. Brain Res. 715:98–103.PubMedCrossRefGoogle Scholar
  10. Conesa-Zamora P., Mollinedo F., Corbalán-García S., and Gómez-Fernández J. C. (2005). A comparative study of the effect of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine and some homologous compounds on PKCα and PKCε. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1687:110–119.CrossRefGoogle Scholar
  11. Daniel L.W., Civoli F., Rogers M.A., Smitherman P.K., Raju P.A., Roederer M. (1995). ET-18-OCH3 inhibits nuclear factor-kappa B activation by 12-O-tetradecanoylphorbol-13-acetate but not by tumor necrosis factor-alpha or interleukin 1 alpha. Cancer Res. 55:4844–4849.PubMedGoogle Scholar
  12. Dell’Albani P., Condorelli D.F., Mudo G., Amico C., Bindoni M., and Belluardo N. (1993). Platelet-activating factor and its methoxy-analogue ET-18-OCH3 stimulate immediate early gene expression in rat astroglial cultures. Neurochem. Int. 22:567–574.CrossRefGoogle Scholar
  13. Diomede L., Bianchi R., Modest E.J., Piovani B., Bubba F., and Salmona M. (1992). Modulation of ATPase activity by cholesterol and synthetic ether lipids in leukemic cells. Biochem Pharmacol. 43:803–807.PubMedCrossRefGoogle Scholar
  14. Fischer A., Muller D., Zimmermann-Kordmann M., Kleuser B., Mickeleit M., Laabs S., Lowe W., Cantagrel F., Reutter W., and Danker K. (2006). The ether lipid inositol-C2-PAF is a potent inhibitor of cell proliferation in HaCaT cells. Chembiochem 7:441–449.PubMedCrossRefGoogle Scholar
  15. Gajate C., Del Canto-Janez E., Acuna Au, Veldman R.J., and Molinedo F. (2004). Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis.J. Exp. Med. 200:353–365.PubMedCrossRefGoogle Scholar
  16. Gajate C., Santos-Beneit A.M., Macho A., Lazaro M., Hernandez-De Rojas A., Modolell M., Munoz E., and Mollinedo F. (2000). Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. Int. J. Cancer 86:208–218.PubMedCrossRefGoogle Scholar
  17. Gajate C. and Molinedo F. (2005). Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280:11641–11647.PubMedCrossRefGoogle Scholar
  18. Gajate C. and Mollinedo F. (2007). Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719.PubMedCrossRefGoogle Scholar
  19. Grosman N. (2001). Similar effects of ether phospholipids, PAF and lyso-PAF on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int. Immunopharmacol. 1:1321–1329.PubMedCrossRefGoogle Scholar
  20. Hanson P.K., Malone L., Birchmore J., and Nichols J. (2003). Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J. Biol. Chem. 278:36041–36050.PubMedCrossRefGoogle Scholar
  21. Helfman D.M., Barnes K.C., Kinkade J.M., Jr., Vogler W.R., Shoji M., and Kuo J.F. (1983). Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res. 43:2955–2961.PubMedGoogle Scholar
  22. Heesebeen E.C., Verdonck L.F., Hermans S.W.G., Van Heugten H.G., Staal G.E.J., and Rijksen G. (1991). Alkyllysophospholipid ET-18-OCH3 acts as an activator of protein kinase C in HL-60 cells. FEBS Lett. 290:231–234.CrossRefGoogle Scholar
  23. Herrmann D.B.J. and Neumann H.A. (1986). Cytotoxic ether phospholipids. Different affinities to lysophosphocholine acyltransferases in sensitive and resistant cells. J. Biol. Chem. 261:7742–7747.PubMedGoogle Scholar
  24. Jiménez-López J. M., Carrasco M. P., Segovia J. L., and Marco C. (2004). Hexadecylphosphocholine inhibits phosphatidylcholine synthesis via both the methylation of phosphatidylethanolamine and CDP-choline pathways in HepG2 cells. Int. J. Biochem. Cell Biol. 36:153–161.PubMedCrossRefGoogle Scholar
  25. Kelley E.E., Modest E.J., and Burns C.P. (1993). Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem. Pharmacol. 45:2435–2439.PubMedCrossRefGoogle Scholar
  26. Kosano H. and Takatani O. (1988). Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res. 48:6033–6036.PubMedGoogle Scholar
  27. Kosano H. and Takatani O. (1989). Inhibition by an alkyl-lysophospholipid of the uptake of epidermal growth factor in human breast cancer cell lines in relation to epidermal growth factor internalization. Cancer Res. 49:2868–2870.PubMedGoogle Scholar
  28. Kosano H. and Takatani O. (1990). Increase of transferrin binding induced by an alkyl- lysophospholipid in breast cancer cells. J. Lipid Mediat. 2:117–121.PubMedGoogle Scholar
  29. Kosano H., Yasutomo Y., Kugai N., Nagata N., Inagaki H., Tanaka S., and Takatani O. (1990). Inhibition of estradiol uptake and transforming growth factor alpha secretion in human breast cancer cell line MCF-7 by an alkyl-lysophospholipid. Cancer Res. 50:3172–3175.PubMedGoogle Scholar
  30. Lozano J., Berra E., Municio M.M., Diaz-Meco M.T., Domiguez I., Sanz L., and Moscat J. (1994). Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269:19200–19202.PubMedGoogle Scholar
  31. Lucas L., Hernandez-Alcoceba R., Penalva V., and Lacal J. C. (2001). Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene 20:1110–1117.PubMedCrossRefGoogle Scholar
  32. Ménez C., Buyse M., Farinotti R., and Barratt G. (2007). Inward translocation of the phospholipid analogue miltefosine across Caco-2 cell membranes exhibits characteristics of a carrier- mediated process. Lipids 42:229–240.PubMedCrossRefGoogle Scholar
  33. Mollinedo F. (2007). Antitumour ether liquids: Proapoptotic agents with multiple therapeutic indications. Expert Opin. Ther. Patents 17:385–405.CrossRefGoogle Scholar
  34. Mollinedo F., Gajate C., Martin-Santamaria S., and Gago F. (2004). ET-18-OCH3 (Edelfosine): A selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr. Medicinal Chem. 11:3163–3184.Google Scholar
  35. Mollinedo F., Gajate C., and Modolell M. (1994). The ether lipid 1-octadecyl-2-methyl-rac- glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem. J. 302:325–329.PubMedGoogle Scholar
  36. Mollinedo F. and Gajate C. (2006). Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug. Resist. Updat. 9:51–73.PubMedCrossRefGoogle Scholar
  37. Na H.K., Inoue H., Surh Y.J. (2005). ET-18-O-CH3-induced apoptosis is causally linked to COX-2 upregulation in H-ras transformed human breast epithelial cells. FEBS Lett. 579:6279–6287.PubMedCrossRefGoogle Scholar
  38. Nicola N.A. (1989). Hemopoietic cell growth factors and their receptors. Annu. Rev. Biochem. 58:45–77.PubMedCrossRefGoogle Scholar
  39. Pawelczyk T. and Lowenstein J.M. (1993). Inhibition of phospholipase C delta by hexadecylphosphorylcholine and lysophospholipids with antitumor activity. Biochem. Pharmacol. 45:493–497.PubMedCrossRefGoogle Scholar
  40. Rerez-Victoria F.J., Gamarro F., Ouellette M., and Castanys S. (2003). Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278:49965–49971.CrossRefGoogle Scholar
  41. Powis G., Seewald M.J., Gratas C., Melder D., Riebow J., and Modest E.J. (1992). Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res. 52:2835–2840.PubMedGoogle Scholar
  42. Pushkareva M.Y., Wannberg S.L., Janoff A.S., and Mayhew E. (2000). Increased cell-surface receptor expression on U-937 cells induced by 1-O-octadecyl-2-O-methyl-sn-glycero-3- phosphocholine. Cancer Immunol. Immunother. 48:569–578.PubMedCrossRefGoogle Scholar
  43. Rakotomanga M., Blanc S., Gaudin K., Chaminade P., and Loiseau P.A. (2007). Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. 51:1425–1430.PubMedCrossRefGoogle Scholar
  44. Ruiter G.A., Zerp S.F., Bartelink H., van Blitterswijk W.J., and Verheij M. (1999). Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 59:2457–2463.PubMedGoogle Scholar
  45. Ruiter G.A., Zerp S.F., Bartelink H., van Blitterswijk W.J., and Verheij M. (2003). Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14:167–173.PubMedCrossRefGoogle Scholar
  46. Salari H., Dryden P., Dovenport R., Howard S., Jones K., and Bittman R. (1992). Inhibition of protein kinase C by ether-linked lipids is not correlated with their antineoplastic activity on WEHI-3B and R6X–B15 cells. Biochim. Biophys. Acta 1134: 81–88.PubMedCrossRefGoogle Scholar
  47. Samadder P., Richards C., Bittman R., Bhullar R.P., and Arthur G. (2003). The antitumor ether lipid 1-Q-octadecyl-2-O-methyl-rac-glycerophosphocholine (ET-18-OCH3) inhibits the association between Ras and Raf-1. Anticancer Res. 3B:2291–2295.Google Scholar
  48. Samadder P., Bittman R., Byun H.S., and Arthur G. (2004). Synthesis and use of novel ether phospholipid enantiomers to probe the molecular basis of the antitumor effects of alkyllysophospholipids: correlation of differential activation of c-Jun NH2-terminal protein kinase with antiproliferative effects in neuronal tumor cells. J Med Chem. 47: 2710–2713.PubMedCrossRefGoogle Scholar
  49. Schallier D.C., Bruyneel E.A., Storme G.A., Hilgard P., Mareel M.M. (1991). Antiinvasive activity of hexadecylphosphocholine in vitro. Anticancer Res. 11:1285–1292.PubMedGoogle Scholar
  50. Shoji M., Fukuhara T., Winton E.F., Berdel W.E., and Vogler W.R. (1994). Different mechanisms of inhibition by alkyl-lysophospholipid and phorbol ester of granulocyte-macrophage colony-stimulating factor binding to human leukemic cell lines. Exp. Hematol. 22:13–18.PubMedGoogle Scholar
  51. Shmelzer Z., Haddad N., Admon E., Pessach I., Leto T. L., Eitan-Hazan Z., Hershfinkel M., and Levy R. (2003). Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J. Cell. Biol. 162:683–692.PubMedCrossRefGoogle Scholar
  52. Tronchere H., Terce F., Record M., Ribbes G., and Chap H. (1991). Modulation of CTP:phosphocholine cytidylyltransferase translocation by oleic acid and the antitumoral alkylphospholipid in HL-60 cells. Biochem. Biophys. Res. Commun. 176:157–165.PubMedCrossRefGoogle Scholar
  53. Uberall F., Oberhuber H., Maly K., Zaknun J., Demuth L., and Grunicke H.H. (1991). Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 51:807–812.PubMedGoogle Scholar
  54. Unger C., Maniera T., Kaufmann-Kolle P., and Eibl H. (1998). In vivo antileishmanial activity of hexadecylphosphocholine and other alkylphosphocholines. Drugs Today 34(Suppl. F):133–140.Google Scholar
  55. van der Luit A.H., Budde M., Ruurs P., Verheij M., and Van Blitterswijk W.J. (2002). Alkyl- lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J. Biol. Chem. 277:39541–39547.PubMedCrossRefGoogle Scholar
  56. Wieder T., Zhang Z., Geilen C.E., Orfaros A.E., Giuliano A.E., and Cabot M.C. (1996). The antitumor phospholipid analog, hexadecylphosphocholine, activates cellular phospholipase D. Cancer Lett. 100:71–79.PubMedCrossRefGoogle Scholar
  57. Zheng B., Oishi K., Shoji M., Eible H., Berdel W.E., Hajdu J., Vogler W.R., and Kou J.F. (1990). Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues. Cancer Res. 50:3025–3031.PubMedGoogle Scholar
  58. Zhou X., Lu X., Richard C., Xiong W., Litchfield D.W., Bittman R., and Arthur G. (1996). 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J. Clin. Invest. 98:937–944.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations