Skip to main content
  • 618 Accesses

Ether glycerophospholipids are major constituents of neural cell membranes. The overall physicochemical characteristics of ether glycerophospholipids are similar to those of ester-bonded glycerophospholipids except for differences in the phase-transition temperature from gel to liquid crystalline and from lamellar to hexagonal phases. These differences may be responsible for determining physical properties of neural membranes, such as bilayer thickness, area per molecule, side-chain packing, free volume, and lateral domains (Paltauf, 1994; Lohner, 1996). The replacement of one or both acyl ester bonds with an alkenyl or alkyl ether bond produces changes in membrane properties (Lohner, 1996), such as a decrease in membrane dipole potential and alterations in thermotropic phase behavior, ion permeability, and sidechain mobility (Paltauf, 1994). Although the occurrence of ether glycerophospholipid species with inositol or serine as a head group has been reported, the most abundant glycerophospholipid species in brain are those with ethanolamine and choline as head groups. Artificial model membranes composed of ether lipids show markedly different molecular dynamics than membranes consisting of diacyl phospholipids (Lohner, 1996). Studies on model membranes indicate that high ether lipid content provides membranes with an unique microenvironment that is necessary for their optimal function. This includes maintenance of activities of membrane-bound enzymes, regulation of permeability, and optimal function of receptors and ion channels. Perturbation of an ether lipid-rich microenvironment in membranes produces significantly more derangements in membrane dynamics than the perturbation of model membranes composed of diacyl glycerophospholipids. Some neutral lipids also contain ether bonds (Foglia et al., 1988; Bordier et al., 1996). They include 1-O-alkyl-2,3-O-diacylsn- glycerols, 1-O-alk-1' -enyl-2,3-O-diacyl-sn-glycerols, and 1-O-alkyl-2-O-acyl-snglycerols that are analogs of triacylglycerol and diacylglycerols, respectively (Snyder, 1996). These lipids protect against radiation damage and possess antitumor properties. 1-O-alk-1ȧ -enyl-2-O-acyl-sn-glycerols and 1-O-alkyl-2-acyl-sn-glycerols are natural constituents of myocardium. These ether lipids stimulate protein kinase C activity suggesting that ether lipids may play an important role in regulating protein kinase C-mediated cellular differentiation (Ford et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar N., Gregoire S., Andre A., Juaneda P., Joffre C., Bron A. M., Creuzot-Garcher C. P., and Bretillon L. (2007). Plasmalogens in the retina: In situ hybridization of dihydroxyacetone phosphate acyltransferase (DHAP-AT)–the first enzyme involved in their biosynthesis–and comparative study of retinal and retinal pigment epithelial lipid composition. Exp. Eye Res. 84:143–151.

    Article  PubMed  CAS  Google Scholar 

  • André A., Cabaret S., Berdeaux O., Juanéda P., Sébédio J. L., and Chardigny J. M. (2006). Bioequivalence of docosahexaenoic acid and α-linolenic acid supplementations on plasmalogen, long-chain aldehyde, and docosahexaenoic acid levels in the brain of very old rats. Nutr. Res. 26:214–220.

    Article  CAS  Google Scholar 

  • Blank M. L., Smith Z. L., Cress E. A., and Snyder F. (1994). Molecular species of ethanolamine plasmalogens and transacylase activity in rat tissues are altered by fish oil diets. Biochim. Biophys. Acta Lipids Lipid Metab. 1214:295–302.

    Article  Google Scholar 

  • Blank M. L., Smith Z. L., Fitzgerald V., and Snyder F. (1995). The CoA-independent transacylase in PAF biosynthesis: Tissue distribution and molecular species selectivity. Biochim. Biophys. Acta Lipids Lipid Metab. 1254:295–301.

    Article  Google Scholar 

  • Bordier C. G., Sellier N., Foucault A. P., and Le Goffic F. (1996). Purification and characterization of deep sea shark Centrophorus squamosus liver oil 1-O-alkylglycerol ether lipids. Lipids 31:521–528.

    Article  PubMed  CAS  Google Scholar 

  • Brinsko S. P., Varner D. D., Love C. C., Blanchard T. L., Day B. C., and Wilson M. E. (2005). Effect of feeding a DHA-enriched nutriceutical on the quality of fresh, cooled and frozen stallion semen. Theriogenology 63:1519–1527.

    Article  PubMed  CAS  Google Scholar 

  • Causeret C. C., Bentejac M. M., Bugaut M. M. (1993). Proteins and enzymes of the peroxisomal membrane in mammals. Biol. Cell 77:89–104.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S. and Mayor S. (2001). The GPI-anchor and protein sorting. Cell Mol. Life Sci. 58:1969–1987.

    Article  PubMed  CAS  Google Scholar 

  • Creer M. H. and Gross R. W. (1985). Reversed-phase high-performance liquid chromatographic separation of molecular species of alkyl ether, vinyl ether, and monoacyl lysophospholipids. J. Chromatogr. 338:61–69.

    Article  PubMed  CAS  Google Scholar 

  • Deckelbaum R. J., Worgall T. S., and Seo T. (2006). n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83:1520–1525.

    Google Scholar 

  • Duhm J., Engelmann B., Schönthier U. M., and Streich S. (1993). Accelerated maximal velocity of the red blood cell Na+/K+ pump in hyperlipidemia is related to increase in 1-palmitoyl-2-arachidonoyl-plasmalogen phosphatidylethanolamine. Biochim. Biophys. Acta Biomembr. 1149:185–188.

    Article  CAS  Google Scholar 

  • Dypbukt J. M., Edman C. C., Sundqvist K., Kakefuda T., Plummer S. M., Harris C. C., and Grafström R. C. (1989). Reactivity of fecapentaene-12 toward thiols, DNA, and these constituents in human fibroblasts. Cancer Res. 49:6058–6063.

    PubMed  CAS  Google Scholar 

  • Engelmann B. (2004). Plasmalogens: Targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Fahy E., Subramaniam S., Brown H. A., Glass C. K., Merrill A. H. J., Murphy R. C., Raetz C. R. H., Russell D. W., Seyama Y., Shaw W., Shimizu T., Spener F., Van Meer G., VanNieuwenhze M. S., White S. H., Witztum J. L., and Dennis E. A. (2005). A comprehensive classification system for lipids. J. Lipid Res. 46:839–861.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist. 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Fezza F., Bisogno T., Minassi A., Appendino G., Mechoulam R., and Di Marzo V. (2002). Noladin ether, a putative novel endocannabinoid: inactivation mechanisms and a sensitive method for its quantification in rat tissues. FEBS Lett. 513:294–298.

    Article  PubMed  CAS  Google Scholar 

  • Foglia T. A., Nungesser E., and Marmer W. N. (1988). Oxidation of 1-O-(alk-1-enyl)-2, 3-di-O-acylglycerols: Models for plasmalogen oxidation. Lipids 23:430–434.

    Article  PubMed  CAS  Google Scholar 

  • Ford D. A. and Gross R. W. (1988). Identification of endogenous 1-O-alk-1F-enyl-2-acyl-sn-glycerol in myocardium and its effective utilization by choline phosphotransferase. J. Biol. Chem. 263:2644–2650.

    PubMed  CAS  Google Scholar 

  • Ford D. A. and Gross R. W. (1989). Differential accumulation of diacyl and plasmalogenic diglycerides during myocardial ischemia. Circ. Res. 64:173–177.

    PubMed  CAS  Google Scholar 

  • Ford D. A. and Hale C. C. (1996). Plasmalogen and anionic phospholipid dependence of the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett. 394:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Ford D. A., Miyake R., Glaser P. E., and Gross R. W. (1989). Activation of protein kinase C by naturally occurring ether-linked diglycerides. J. Biol. Chem. 264:13818–13824.

    PubMed  CAS  Google Scholar 

  • Gills J. J. and Dennis P. A. (2004). The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin. Invest. Drugs. 13:787–797.

    Article  CAS  Google Scholar 

  • Gills J. J., Holbeck S., Hollingshead M., Hewitt S. M., Kozikowski A. P., and Dennis P. A. (2006). Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol. Cancer Ther. 5:713–722.

    Article  PubMed  CAS  Google Scholar 

  • Gorgas K., Teigler A., Komljenovic D., and Just W. W. (2006). The ether lipid-deficient mouse: Tracking down plasmalogen functions. Biochim. Biophys. Acta Mol. Cell Res. 1763:1511–1526.

    Article  CAS  Google Scholar 

  • Guan Z. Z., Grunler J., Piao S. F., and Sindelar P. J. (2001). Separation and quantitation of phospholipids and their ether analogues by high-performance liquid chromatography. Anal. Biochem. 297:137–143.

    Article  PubMed  CAS  Google Scholar 

  • Hahnel D., Huber T., Kurze V., Beyer K., and Engelmann B. (1999). Contribution of copper binding to the inhibition of lipid oxidation by plasmalogen phospholipids. Biochem. J. 340:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Han X. and Gross R. W. (1991). Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers. Biochim. Biophys. Acta Biomembr. 1069:37–45.

    Article  CAS  Google Scholar 

  • Han X. L. and Gross R. W. (1990). Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry 29:4992–4996.

    Article  PubMed  CAS  Google Scholar 

  • Hanuš L., Abu-Lafi S., Fride E., Breuer A., Vogel Z., Shalev D. E., Kustanovich I., and Mechoulam R. (2001). 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98:3662–3665.

    Article  PubMed  Google Scholar 

  • Hayashi H. and Oohashi M. (1995). Incorporation of acetyl-CoA generated from peroxisomal β-oxidation into ethanolamine plasmalogen of rat liver. Biochim. Biophys. Acta Lipids Lipid Metab. 1254:319–325.

    Article  Google Scholar 

  • Hayashi H. and Takahata S. (1991). Role of peroxisomal fatty acyl-CoA β-oxidation in phospholipid biosynthesis. Arch. Biochem. Biophys. 284:326–331.

    Article  PubMed  CAS  Google Scholar 

  • Hooper N. M. (1997). Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin. Chim. Acta. 266:3–12.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka I., Inomata M., Ueno K., and Yamakawa T. (1978). Sulfated glyceroglycolipids in rat brain. Structure sulfation in vivo, and accumulation in whole brain during development. J. Biol. Chem. 253:898–907.

    PubMed  CAS  Google Scholar 

  • Kim S. Y., Min D. S., Choi J. S., Choi Y. S., Park H. J., Sung K. W., Kim J., and Lee M. Y. (2004). Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J. Neuropathol. Exp. Neurol. 63:812–820.

    PubMed  CAS  Google Scholar 

  • Laine K., Jarvinen K., Mechoulam R., Breuer A., and Jarvinen T. (2002). Comparison of the enzymatic stability and intraocular pressure effects of 2-arachidonylglycerol and noladin ether, a novel putative endocannabinoid. Invest. Ophthalmol. Vis. Sci. 43:3216–3222.

    PubMed  Google Scholar 

  • Liliom K., Fischer D. J., Virág T., Sun G., Miller D. D., Tseng J. L., Desiderio D. M., Seidel M. C., Erickson J. R., and Tigyi G. (1998a). Identification of a novel growth factor-like lipid, 1-O-cis-alk-1–enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations. J. Biol. Chem. 273:13461–13468.

    Article  PubMed  CAS  Google Scholar 

  • Liliom K., Guan Z., Tseng J. L., Desiderio D. M., Tigyi G., and Watsky M. A. (1998b). Growth factor-like phospholipids generated after corneal injury. Am. J. Physiol. 274:C1065–C1074.

    PubMed  CAS  Google Scholar 

  • Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids. 81:167–184.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004a). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004b). Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1−) ion (125I3 ). Anal. Biochem. 331:169–176.

    PubMed  CAS  Google Scholar 

  • Maldergem L., Moser A., Vincent M. F., Roland D., Reding R., Otte J. B., Wanders R., and Sokal E. (2005). Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J. Inherited Metab. Dis. 28:593–600.

    Article  PubMed  Google Scholar 

  • Mechoulam R., Ben Shabat S., Hanuš L., Ligumsky M., Kaminski N. E., Schatz A. R., Gopher A., Almog S., Martin B. R., and Compton D. R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Mower H. F., Ichinotsubo D., Wang L. W., Mandel M., Stemmermann G., Nomura A., Heilbrun L., Kamiyama S., and Shimada A. (1982). Fecal mutagens in two Japanese populations with different colon cancer risks. Cancer Res. 42:1164–1169.

    PubMed  CAS  Google Scholar 

  • Njie Y. F., Kumar A., Qiao Z., Zhong L., and Song Z. H. (2006). Noladin ether acts on trabecular meshwork cannabinoid (CB1) receptors to enhance aqueous humor outflow facility. Invest Ophthalmol. Vis. Sci. 47:1999–2005.

    Article  PubMed  Google Scholar 

  • Oka S., Tsuchie A., Tokumura A., Muramatsu M., Suhara Y., Takayama H., Waku K., and Sugiura T. (2003). Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J. Neurochem. 85:1374–1381.

    Article  PubMed  CAS  Google Scholar 

  • Paltauf F. (1994). Ether lipids in biomembranes. Chem. Phys. Lipids. 74:101–139.

    Article  PubMed  CAS  Google Scholar 

  • Pearson R. H. and Pascher I. (1979). The molecular structure of lecithin dihydrate. Nature 281:499–501.

    Article  PubMed  CAS  Google Scholar 

  • Pieringer J., Rao G. S., Mandel P., and Pieringer R. A. (1977). The association of the sulphogalactosylglycerolipid of rat brain with myelination. Biochem. J. 166:421–428.

    PubMed  CAS  Google Scholar 

  • Plummer S. M., Hall M., and Faux S. P. (1995). Oxidation and genotoxicity of fecapentaene-12 are potentiated by prostaglandin H synthase. Carcinogenesis. 16:1023–1028.

    Article  PubMed  CAS  Google Scholar 

  • Povey A. C., Plummer S. M., Grafstrom R. C., and Harris C. C. (1990). Genotoxic mechanisms of fecapentaene-12 in human cells. Prog. Clin. Biol. Res. 347:155–166.

    PubMed  CAS  Google Scholar 

  • Reisse S., Rothardt G., Volkl A., and Beier K. (2001). Peroxisomes and ether lipid biosynthesis in rat testis and epididymis. Biol. Reprod. 64:1689–1694.

    Article  PubMed  CAS  Google Scholar 

  • Roberts W. L., Myher J. J., Kuksis A., and Rosenberry T. L. (1988). Alkylacylglycerol molecular species in the glycosylinositol phospholipid membrane anchor of bovine erythrocyte acetylcholinesterase. Biochem. Biophys. Res. Commun. 150:271–277.

    Article  PubMed  CAS  Google Scholar 

  • Rodemer C., Thai T. P., Brugger B., Kaercher T., Werner H., Nave K. A., Wieland F., Gorgas K., and Just W. W. (2003). Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12:1881–1895.

    Article  PubMed  CAS  Google Scholar 

  • Schulman G., Bodine P. V., and Litwack G. (1992). Modulators of the glucocorticoid receptor also regulate mineralocorticoid receptor function. Biochemistry 31:1734–1741.

    Article  PubMed  CAS  Google Scholar 

  • Seelig J. and Waespe-Sarcevic N. (1978). Molecular order in cis and trans unsaturated phospholipid bilayers. Biochemistry 17:3310–3315.

    Article  PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: The biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Snyder F. (1996). Ether-linked lipids and their bioactive species: Occurrence, chemistry, metabolism, regulation, and function. In: Vance D. E. and Vance J. E. (eds.), Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier Science, The Netherlands, pp. 183–209.

    Chapter  Google Scholar 

  • Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., and Waku K. (1995). 2-arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T., Nakane S., Kishimoto S., Waku K., Yoshioka Y., Tokumura A., and Hanahan D. J. (1999). Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1440:194–204.

    Article  CAS  Google Scholar 

  • Szekely J. and Gates K. S. (2006). Noncovalent DNA binding and the mechanism of oxidative DNA damage by fecapentaene-12. Chem. Res. Toxicol. 19:117–121.

    Article  PubMed  CAS  Google Scholar 

  • Thukkani A. K., Hsu F. F., Crowley J. R., Wysolmerski R. B., Albert C. J., and Ford D. A. (2002). Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens–Production of the chemoattractant, 2-chlorohexadecanal. J. Biol. Chem. 277:3842–3849.

    Article  PubMed  CAS  Google Scholar 

  • Thukkani A. K., McHowat J., Hsu F. F., Brennan M. L., Hazen S. L., and Ford D. A. (2003). Identification of α-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108:3128–3133.

    Article  PubMed  CAS  Google Scholar 

  • Van Tassell R. L., Piccariello T., Kingston D. G., and Wilkins T. D. (1989). The precursors of fecapentaenes: purification and properties of a novel plasmalogen. Lipids 24:454–459.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven N. M., Roe D. S., Kok R. M., Wanders R. J., Jakobs C., and Roe C. R. (1998). Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J. Lipid Res. 39:66–74.

    PubMed  CAS  Google Scholar 

  • Visser W. F., van Roermund C. W., IJlst L., Waterham H. R., and Wanders R. J. (2007). Metabolite transport across the peroxisomal membrane. Biochem. J. 401:365–375.

    Article  PubMed  CAS  Google Scholar 

  • Wanders R. J. A. and Waterham H. R. (2006). Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta Mol. Cell Res. 1763:1707–1720.

    Article  CAS  Google Scholar 

  • Wei H., Kemp S., McGuinness M. C., Moser A. B., and Smith K. D. (2000). Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann. Neurol. 47:286–296.

    Article  PubMed  CAS  Google Scholar 

  • Wildsmith K. R., Albert C. J., Hsu F. F., Kao J. L. F., and Ford D. A. (2006). Myeloperoxidase-derived 2-chlorohexadecanal forms Schiff bases with primary amines of ethanolamine glycerophospholipids and lysine. Chem. Phys. Lipids. 139:157–170.

    Article  PubMed  CAS  Google Scholar 

  • Wolf D. E., Lipscomb A. C., and Maynard V. M. (1988). Causes of nondiffusing lipid in the plasma membrane of mammalian spermatozoa. Biochemistry. 27:860–865.

    Article  PubMed  CAS  Google Scholar 

  • Yachida Y., Kashiwagi M., Mikami T., Tsuchihashi K., Daino T., Akino T., and Gasa S. (1998). Stereochemical structures of synthesized and natural plasmalogalactosylceramides from equine brain. J. Lipid Res. 39:1039–1045.

    PubMed  CAS  Google Scholar 

  • Yachida Y., Kashiwagi M., Mikami T., Tsuchihashi K., Daino T., Akino T., and Gasa S. (1999). Novel plasmalogalactosylalkylglycerol from equine brain. J. Lipid Res. 40:2271–2278.

    PubMed  CAS  Google Scholar 

  • Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988). A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263:11590–11596.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Occurrence and Importance of Ether Lipids in Brain. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_1

Download citation

Publish with us

Policies and ethics