Pharmacological Support of the Failing Right Ventricle

  • P. F. Wouters
  • S. Rex
  • C. Missant
Conference paper


After years of relative neglect, the role of the right ventricle in maintaining circulatory homeostasis is now generally recognized. Right ventricular (RV) dysfunction is a frequent cause of low output syndrome after cardiac surgery and appears to be associated with a higher mortality than left ventricular (LV) failure in the perioperative setting [1]. In the acute respiratory distress syndrome (ARDS) and in primary pulmonary hypertension [2] RV failure has an independent detrimental effect on clinical outcome. This pathophysiological condition remains a clinical challenge for which our current therapeutic approaches do not yet provide a satisfactory answer.


Pulmonary Hypertension Right Ventricular Acute Respiratory Distress Syndrome Brain Natriuretic Peptide Pulmonary Vascular Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davila-Roman VG, Waggoner AD, Hopkins WE, Barzilai B (1995) Right ventricular dysfunction in low output syndrome after cardiac operations: assessment by transesophageal echocardiography. Ann Thorac Surg 60:1081–1086PubMedCrossRefGoogle Scholar
  2. 2.
    Monchi M, Bellenfant F, Cariou A, et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158:1076–1081PubMedGoogle Scholar
  3. 3.
    Mansencal N, Joseph T, Vieillard-Baron A, et al (2003) Comparison of different echocardiographic indexes secondary to right ventricular obstruction in acute pulmonary embolism. Am J Cardiol 92:116–119PubMedCrossRefGoogle Scholar
  4. 4.
    Missant C, Rex S, Claus P, Mertens L, Wouters PF (2007) Load-sensitivity of regional tissue deformation in the right ventricle: isovolumic versus ejection-phase indices of contractility. Heart [Epub ahead of print]Google Scholar
  5. 5.
    Santamore WP, Gray LJr (1995) Significant left ventricular contributions to right ventricular systolic function. Mechanism and clinical implications. Chest 107:1134–1145PubMedCrossRefGoogle Scholar
  6. 6.
    Fattouch K, Sbraga F, Bianco G, et al (2005) Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Cardiac Surg 20:171–176CrossRefGoogle Scholar
  7. 7.
    Melot C, Lejeune P, Leeman M, Moraine JJ, Naeije R (1989) Prostaglandin E1 in the adult respiratory distress syndrome. Benefit for pulmonary hypertension and cost for pulmonary gas exchange. Am Rev Respir Dis 139:106–110PubMedGoogle Scholar
  8. 8.
    Ichinose F, Roberts JD, Zapol WM (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109:3106–3111PubMedCrossRefGoogle Scholar
  9. 9.
    Dellinger RP, Zimmerman JL, Taylor RW, et al (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 26:15–23PubMedCrossRefGoogle Scholar
  10. 10.
    Olschewski H, Rose F, Schermuly R, et al (2004) Prostacyclin and its analogues in the treatment of pulmonary hypertension. Pharmacol Ther 102:139–153PubMedCrossRefGoogle Scholar
  11. 11.
    Haraldsson S.A., Kieler-Jensen N, Ricksten SE (2001) The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg 93:1439–1445CrossRefGoogle Scholar
  12. 12.
    Olschewski H, Rohde B, Behr J, et al (2003) Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124:1294–1304PubMedCrossRefGoogle Scholar
  13. 13.
    Hoeper MM, Olschewski H, Ghofrani HA, et al (2000) A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol 35:176–182PubMedCrossRefGoogle Scholar
  14. 14.
    Rex S, Schaelte G, Metzelder S, et al (2007) Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand 51:1258–1267PubMedGoogle Scholar
  15. 15.
    Galie N, Torbicki A, Barst R, et al (2004) Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J 25:2243–2278PubMedCrossRefGoogle Scholar
  16. 16.
    Atz AM, Lefler AK, Fairbrother DL, Uber WE, Bradley SM (2002) Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124:628–629PubMedCrossRefGoogle Scholar
  17. 17.
    Ghofrani HA, Wiedemann R, Rose F, et al (2002) Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 136:515–522PubMedGoogle Scholar
  18. 18.
    Ichinose F, Erana-Garcia J, Hromi J, et al (2001) Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 29:1000–1005PubMedCrossRefGoogle Scholar
  19. 19.
    Trachte AL, Lobato EB, Urdaneta F, et al (2005) Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg 79:194–197PubMedCrossRefGoogle Scholar
  20. 20.
    Schulze-Neick I, Hartenstein P, Li J, et al (2003) Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 108(Suppl 1): II167–II173PubMedGoogle Scholar
  21. 21.
    Nagendran J, Archer SL, Soliman D, et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248PubMedCrossRefGoogle Scholar
  22. 22.
    Motte S, McEntee K, Naeije R (2006) Endothelin receptor antagonists. Pharmacol Ther 110: 386–414PubMedCrossRefGoogle Scholar
  23. 23.
    Dorman BH, Kratz JM, Multani MM, et al (2004) A prospective, randomized study of endothelin and postoperative recovery in off-pump versus conventional coronary artery bypass surgery. J Cardiothorac Vasc Anesth 18:25–29PubMedCrossRefGoogle Scholar
  24. 24.
    Kaisers U, Busch T, Wolf S, et al (2000) Inhaled endothelin A antagonist improves arterial oxygenation in experimental acute lung injury. Intensive Care Med 26:1334–1342PubMedCrossRefGoogle Scholar
  25. 25.
    Ikonomidis JS, Hilton EJ, Payne K, et al (2007) Selective endothelin-A receptor inhibition after cardiac surgery: a safety and feasibility study. Ann Thorac Surg 83:2153–2160PubMedCrossRefGoogle Scholar
  26. 26.
    Phua J, Lim TK, Lee KH (2005) B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 33:2094–2013PubMedCrossRefGoogle Scholar
  27. 27.
    Mentzer RM, Oz MC, Sladen RN, et al (2007) Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA Trial. J Am Coll Cardiol 49:716–726PubMedCrossRefGoogle Scholar
  28. 28.
    Nagaya N, Nishikimi T, Uematsu M, et al (2000) Haemodynamic and hormonal effects of adrenomedullin in patients with pulmonary hypertension. Heart 84:653–658PubMedCrossRefGoogle Scholar
  29. 29.
    Nagaya N, Kyotani S, Uematsu M, et al (2004) Effects of adrenomedullin inhalation on hemodynamics and exercise capacity in patients with idiopathic pulmonary arterial hypertension. Circulation 109:351–356PubMedCrossRefGoogle Scholar
  30. 30.
    Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30:2548–2552PubMedCrossRefGoogle Scholar
  31. 31.
    Rich S, Gubin S, Hart K (1990) The effects of phenylephrine on right ventricular performance in patients with pulmonary hypertension. Chest 98:1102–1106PubMedCrossRefGoogle Scholar
  32. 32.
    Price LC, Forrest P, Sodhi V, et al (2007) Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth 99:552–555PubMedCrossRefGoogle Scholar
  33. 33.
    Ducas J, Stitz M, Gu S, Schick U, Prewitt RM (1992) Pulmonary vascular pressure-flow characteristics. Effects of dopamine before and after pulmonary embolism. Am Rev Respir Dis 146:307–312PubMedGoogle Scholar
  34. 34.
    Cheung PY, Barrington KJ (2001) The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit Care 5:158–166PubMedCrossRefGoogle Scholar
  35. 35.
    Kerbaul F, Rondelet B, Demester JP, et al (2006) Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure. Crit Care Med 34:2814–2819PubMedCrossRefGoogle Scholar
  36. 36.
    Tarnow J, Komar K (1988) Altered hemodynamic response to dobutamine in relation to the degree of preoperative beta-adrenoceptor blockade. Anesthesiology 68:912–919PubMedCrossRefGoogle Scholar
  37. 37.
    Ducas J, Duval D, Dasilva H, Boiteau P, Prewitt RM (1987) Treatment of canine pulmonary hypertension: effects of norepinephrine and isoproterenol on pulmonary vascular pressureflow characteristics. Circulation 75:235–242PubMedGoogle Scholar
  38. 38.
    Deb B, Bradford K, Pearl RG (2000) Additive effects of inhaled nitric oxide and intravenous milrinone in experimental pulmonary hypertension. Crit Care Med 28:795–799PubMedCrossRefGoogle Scholar
  39. 39.
    Hentschel T, Yin N, Riad A, et al (2007) Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology 106:124–131PubMedCrossRefGoogle Scholar
  40. 40.
    Lamarche Y, Perrault LP, Maltais S, Tetreault K, Lambert J, Denault AY (2007) Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg 31:1081–1087PubMedCrossRefGoogle Scholar
  41. 41.
    Lobato EB, Beaver T, Muehlschlegel J, Kirby DS, Klodell C, Sidi A (2006) Treatment with phosphodiesterase inhibitors type III and V: milrinone and sildenafil is an effective combination during thromboxane-induced acute pulmonary hypertension. Br J Anaesth 96:317–322PubMedCrossRefGoogle Scholar
  42. 42.
    Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden IB (1995) Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol 27:1859–1866PubMedCrossRefGoogle Scholar
  43. 43.
    Lilleberg J, Nieminen MS, Akkila J, et al (1998) Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J 19:660–668PubMedCrossRefGoogle Scholar
  44. 44.
    Pollesello P, Mebazaa A (2004) ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care 10:436–441PubMedCrossRefGoogle Scholar
  45. 45.
    Grossini E, Caimmi PP, Molinari C, Teodori G, Vacca G (2005) Hemodynamic effect of intracoronary administration of levosimendan in the anesthetized pig. J Cardiovasc Pharmacol 46:333–342PubMedCrossRefGoogle Scholar
  46. 46.
    Missant C, Rex S, Segers P, Wouters PF (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715PubMedCrossRefGoogle Scholar
  47. 47.
    Parissis JT, Paraskevaidis I, Bistola V, et al (2006) Effects of levosimendan on right ventricular function in patients with advanced heart failure. Am J Cardiol 98:1489–1492PubMedCrossRefGoogle Scholar
  48. 48.
    Morelli A, Teboul JL, Maggiore SM, et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293PubMedCrossRefGoogle Scholar
  49. 49.
    Kivikko M, Antila S, Eha J, Lehtonen L, Pentikainen PJ (2002) Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharmacol Ther 40:465–471PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • P. F. Wouters
    • 1
  • S. Rex
    • 2
  • C. Missant
    • 3
  1. 1.Department of AnesthesiologyGhent University HospitalGhentBelgium
  2. 2.Department of AnesthesiologyUniversity Hospital of the RWTH PauwelsstrasseAachenGermany
  3. 3.Department of Acute Medical Sciences KatholiekeUniversiteit Leuven MinderbroederstraatLeuvenBelgium

Personalised recommendations