Sedation or Analgo-sedation in the ICU: A Multimodality Approach

  • F. Meurant
  • A. Bodart
  • J. P. Koch
Conference paper


Until now, we have used vital signs to assess sedation in critical care patients. However, this simplistic approach does not seem to be adequate to achieve optimal patent care. Sedation is an essential component of caring for critically ill patients, necessitating both appropriate selection and adequate monitoring of drug therapy. Everyone working in an intensive care unit (ICU) understands the challenge of achieving an adequate level of sedation in an anxious and agitated patient with difficult airway management requiring optimalization of mechanical ventilation. In addition, we know that these patients can rapidly develop hypotension and decreased cardiac output leading to multiple organ dysfunction. This complicates our choice of sedative regimen.


Intensive Care Unit NMDA Receptor Intensive Care Unit Patient Withdrawal Syndrome NMDA Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novaes MA, Knobel E, Bork AM, et al (1999) Stressors in the ICU: perception of the patient, relatives and healthcare team. Intensive Care Med 25:1421–14262PubMedCrossRefGoogle Scholar
  2. 2.
    Kollef MH, Levy NT, Ahrens TS, et al (1998) The use of continuous i.v. sedation associated with prolongation of mechanical ventilation. Chest 114:541–548PubMedCrossRefGoogle Scholar
  3. 3.
    Anand KJ, Barton BA, McIntosh N, et al (1999) Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal Outcome and Prolonged Analgesia in Neonates. Arch Pediatr Adolesc Med 153:331–338PubMedGoogle Scholar
  4. 4.
    Malacrida R, Fritz M.E, Suter PM, et al (1992) Pharmacokinetics of midazolam administered by continuous infusion to intensive care patients. Crit Care Med 20:1123–1126PubMedCrossRefGoogle Scholar
  5. 5.
    Shafer A (1998) Complications of sedation with midazolam in the ICU and a comparison with other sedative regimens Crit Care Med 26(5):947–956PubMedCrossRefGoogle Scholar
  6. 6.
    Mc.Keage K, Perry CM (2003) Propofol: a review of its use in intensive care sedation of adults, CNS Drugs 17:235–272Google Scholar
  7. 7.
    Orser BA, Bertlik M, Wang LY, et al (1995) Inhibition by propofol of the N-Methyl-D-Aspartate subtype of glutamate receptor in cultured hippocampal neurons. Br J Pharmacol 116: 1761–1768PubMedGoogle Scholar
  8. 8.
    Buggy DJ, Nicol B, Rowbotham DJ, et al (2000) Effects of intravenous anesthetic agents on glutamate release: a role for GABAA receptor-mediated inhibition. Anesthesiology 92:1067–1073PubMedCrossRefGoogle Scholar
  9. 9.
    Zacny JP, Lichtor JL, Coalson DW, et al (1993) Assessing the behavioural effects and abuse potential of propofol bolus injections in healthy volunteers. Drug Alcohol Depend 32:45–57PubMedCrossRefGoogle Scholar
  10. 10.
    Chamorro C, de Latorre FJ, Montero A, et al (1996) Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective randomized, multicenter trial. Crit Care Med 24:932–939PubMedCrossRefGoogle Scholar
  11. 11.
    Weinbroum AA, Halpem P, Rudick V, et al (1997) Midazolam versus propofol for long-term sedation in ICU; a randomised prospective comparison. Intensive Care Med 23:1258–1263PubMedCrossRefGoogle Scholar
  12. 12.
    Ostermann ME, Keenan SP, Seiferling RA, et al (2000) Sedation in the intensive care unit: a systematic review. JAMA 283:1451–1459PubMedCrossRefGoogle Scholar
  13. 13.
    Short TG, Chui PT (1991) Propofol and midazolam act synergistically in combination. Br J Anaesth 67:539–545PubMedCrossRefGoogle Scholar
  14. 14.
    Pali Sen, Denis Bell (2006) Model of the interaction of two chemicals. J Theor Biol 238:652–656CrossRefGoogle Scholar
  15. 15.
    Ben-Shlomo I, Abd-El-Kalhim H, Ezry J, et al (1990) Midazolam acts synergistically with fentanyl for induction of anaesthesia. Br J Anaesth 64:45–47PubMedCrossRefGoogle Scholar
  16. 16.
    Chien CC, Pasternak GW (1997) Synthesis and characterization of iodopentazocine, a selective sigma (1) receptor ligand. Eur J Pharmacol 321:361–368PubMedCrossRefGoogle Scholar
  17. 17.
    Kehlet H, Dahl JB (1993) The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg 77:1048–1056PubMedCrossRefGoogle Scholar
  18. 18.
    Katz J (2001) Pre-emptive analgesia: importance of timing. Can J Anesth 48:105–111PubMedGoogle Scholar
  19. 19.
    Ely EW, Baker AM, Evans GW, Haponik EF (1999) The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med 25:581–587PubMedCrossRefGoogle Scholar
  20. 20.
    Leeson PD, Iversen LL (1994) The glycine site on the NMDA receptor: Structure-activity relationships and therapeutic potential. J Med Chem37:4053–4067PubMedCrossRefGoogle Scholar
  21. 21.
    Hirota K, Okawa H, Appadu BL, et al (1999) Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells. Anesthesiology 90:174–182PubMedCrossRefGoogle Scholar
  22. 22.
    Laulin JP, Maurette P, Corcuff JB, et al (2002) The role of ketamine in preventing fentanylinduced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg 94:1263–1269PubMedCrossRefGoogle Scholar
  23. 23.
    Hernandez LF, Segovia G, Mora F (2004) Effects of activation of NMDA and AMPA glutamate receptors on the extracellular concentrations of dopamine, acetylcholine, and GABA in striatum of the awake rat: A microdialysis study, Neurochem Res 28:1819–1927CrossRefGoogle Scholar
  24. 24.
    Liu HT, Hollmann MW, Hoenemann CW, et al (2001) Modulation of NMDA receptor function by ketamine and magnesium, Anesth Analg 92:1173–1181PubMedCrossRefGoogle Scholar
  25. 25.
    Kara H, Sahin N, Ulusan V, et al (2002) Magnesium infusion reduces perioperative pain, Eur J Anaesth 19:52–56Google Scholar
  26. 26.
    Altan A, Turgut N, Yildiz F, et al (2005) Effects of magnesium sulphate and clonidine on propofol consumption, haemodynamics and postoperative recovery. Br J Anesth 94:438–441CrossRefGoogle Scholar
  27. 27.
    King M, Pan YX, Mei J, Pasternak GW (1997) Enhanced kappa-opioid receptor-mediated analgesia by antisense targeting the sigmal receptor. Eur J Pharmacol 331:R5–R6PubMedCrossRefGoogle Scholar
  28. 28.
    Flacke JW, Bloor BC, Flacke WF, et al (1987) Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology 67:11–19PubMedCrossRefGoogle Scholar
  29. 29.
    Nguyen TT, Katsumoto K, Watanabe H, et al (1997) Involvement of supraspinal Gaba-ergic systems in clonidine-induced anti-nociception in the tail-pinch test in mice. Life Sci 61: 1097–1103PubMedCrossRefGoogle Scholar
  30. 30.
    Gupta PK, Sehgal R, Gupta M, et al (2002) Attenuation of cardiovascular responses to ketamine: comparative evaluation of lignocaine and clonidine. Indian J Anaesth 46:457–459Google Scholar
  31. 31.
    Handa F, Tanaka M, Nishikawa T, et al (2000) Effects of oral clonidine premedication on side effects of intravenous ketamine anesthesia: a randomized double blind, placebo controlled study. J Clin Anesth 12:19–24PubMedCrossRefGoogle Scholar
  32. 32.
    Melichar JK, Daglish MR, Nutt DJ, et al (2001) Addiction and withdrawal: Current views. Curr Opin Pharmacol 1: 84–90PubMedCrossRefGoogle Scholar
  33. 33.
    Mortero RF, Clark LD, Tolan MM, et al (2001) The effects of small dose ketamine on propofol sedation: respiration, post-operative mood, perception, cognition and pain. Anesth Analg 92:1465–1469PubMedCrossRefGoogle Scholar
  34. 34.
    Nishiyama T, Hanaoka K (2001) The synergistic interaction between midazolam and clonidine in spinally-mediated analagesia in two different pain models of rats. Anesth Analg 93:1025–1031PubMedCrossRefGoogle Scholar
  35. 35.
    Deem S, Lee CM, Randall C (2003) Acquired neuromuscular disorders in ICU. Am J Respir Crit Care Med 168:735–739PubMedCrossRefGoogle Scholar
  36. 36.
    Kollef MH, Levy NT, Ahrens TS, Schaiff R, Rentice D, Sherman G (1998) The use of continuous i.v sedation is associated with prolongation of mechanical ventilation. Chest 114:541–548PubMedCrossRefGoogle Scholar
  37. 37.
    Kress JP, Pohlman AS, O’Connor MF, et al (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedCrossRefGoogle Scholar
  38. 38.
    Vinik HR, Kissin I (1998) Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg 86:1307–1311PubMedCrossRefGoogle Scholar
  39. 39.
    Kutsuwada T, Kashiwabuchi N, Mori H, et al (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41PubMedCrossRefGoogle Scholar
  40. 40.
    Danysz W, Parsons AC (1998) Glycine and N-methyl-D-aspartate receptors. Pharmacol Rev 50:597–664PubMedGoogle Scholar
  41. 41.
    Katz J (2001) Pre-emptive analgesia: importance of timing. Can J Anesth 48:105–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • F. Meurant
    • 1
  • A. Bodart
    • 1
  • J. P. Koch
    • 1
  1. 1.Intensive Care UnitKirchberg HospitalLuxemburg

Personalised recommendations