Quantification of Improved Left Ventricular Performance during Cardiac Resynchronization Therapy

  • B. Lamia
  • M. R. Pinsky
Conference paper


Regional contraction asynchrony is the most common contractile abnormality seen clinically, accounting for much of the observed, clinically relevant increase in morbidity from heart disease. Regional myocardial dyssynchrony, characterized by regional wall motion abnormalities (RWMA), commonly occurs in patients with both normal [1, 2, 3, 4] and abnormal [5, 6, 7] cardiac physiology. RWMA are monitored intraoperatively to detect regional myocardial ischemia [8, 9, 10]. The impact of RWMA on global left ventricular (LV) performance is difficult to quantify but it is important to have a quantitative measure of regional myocardial dysfunction to minimize subjective bias in the diagnosis of myocardial ischemia [2], and aid in the evaluation of treatments and titration of therapies used to restore regional myocardial function, including both revascularization and cardiac resynchronization therapy.


Right Ventriclar Tissue Doppler Imaging Radial Strain Speckle Tracking Right Atrial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandian NG, Skorton DJ, Collins SM, Falsetti HL, Burke ER, Kerber RE (1983) Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 51:1667–1673PubMedCrossRefGoogle Scholar
  2. 2.
    Thys DM (1987) The intraoperative assessment of regional myocardial performance: Is the cart before the horse? J Cardiothorac Anesth 1:273–275PubMedCrossRefGoogle Scholar
  3. 3.
    LeWinter M, Kent R, Kroener J, Carew T, Covell J (1975) Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 37:191–199PubMedGoogle Scholar
  4. 4.
    Haendchen RV, Wyatt HL, Maurer G, et al (1983) Quantification of regional cardiac function by two-dimensional echocardiography I. Patterns of contraction on the normal left ventricle. Circulation 67:1234–1245PubMedGoogle Scholar
  5. 5.
    Xiao HB, Roy C, Gibson DG(1994) Nature of ventricular activation in patients with dilated cardiomyopathy: evidence for bilateral bundle branch block. Br Heart J 72:167–174PubMedCrossRefGoogle Scholar
  6. 6.
    Bonow RO (1990) Regional left ventricular nonuniformity: effects on left ventricular diastolic function in ischemic heart disease, hypertrophic cardiomyopathy, and the normal heart. Circulation 81:11154–11165Google Scholar
  7. 7.
    Little W, Reeves R, Arciniegas J, Katholi R, Rogers E (1982) Mechanism of abnormal interventicular septal motion during delayed left ventricular activation. Circulation 65:1486–1491PubMedGoogle Scholar
  8. 8.
    Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727–H738PubMedGoogle Scholar
  9. 9.
    Buffington CW, Coyle RJ (1991) Altered load dependence of post-ischemic myocardium. Anesthesiology 75:464–474PubMedCrossRefGoogle Scholar
  10. 10.
    Miura T, Bhargava V, Guth BD, et al (1993) Increased afterload intensifies asynchronous wall motion and impairs ventricular relaxation. J Appl Physiol 75:389–396PubMedGoogle Scholar
  11. 11.
    Shroff SG, Naegelen D, Clark WA (1990) Relation between left ventricular systolic resistance and ventricular rate processes. Am J Physiol 258:H381–H394PubMedGoogle Scholar
  12. 12.
    Diedericks J, Leone BJ, Foëx P (1989) Regional differences in left ventricular wall motion in the anesthetized dog. Anesthesiology 70:82–90PubMedCrossRefGoogle Scholar
  13. 13.
    Freedman RA, Alderman EL, Sheffield LT, Saporito M, Fisher LD (1987) Bundle branch block in patients with chronic coronary artery disease: angiographie correlates and prognostic significance. J Am Coll Cardiol 10:73–80PubMedGoogle Scholar
  14. 14.
    Strum DP, Pinsky MR (2000) Esmolol-induced regional wall motion abnormalities do not affect regional ventricular elastances. Anesth Analg 90:252–261PubMedCrossRefGoogle Scholar
  15. 15.
    Bailer D, Wolpers HG, Zipfel J, Bretschneider HJ, Heilige G (1988) Comparison of RA, RV apex and AV sequential pacing on MVO1 and cardiac efficiency. Pacing Clin Electrophysiol 11:394–403CrossRefGoogle Scholar
  16. 16.
    Blanc JJ, Etienne Y, Gilard M, et al (1997) Evaluation of different ventricular pacing sites in patients with severe heart failure. Circulation 96:3273–3277PubMedGoogle Scholar
  17. 17.
    Auricchio A, Stellbrink C, Block M, et al (1998) Effect of pacing chamber and atrio-ventricular delay on acute systolic function of paced heart failure patients in PATH-CHF Study. Pacing Clin Electrophysiol 21:837Google Scholar
  18. 18.
    Sogaard P, Kim WY, Jensen HK, et al (2001) Impact of acute biventricular pacing on left ventricular performance and volume sin patients with severe heart failure. A tissue Doppler and three-dimensional echocardiographic study. Cardiology 95:173–182PubMedCrossRefGoogle Scholar
  19. 19.
    Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2002) Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39:489–499PubMedCrossRefGoogle Scholar
  20. 20.
    Gorcsan J 3rd, Kanzaki H, Bazaz R, Dohi K, Schwartzman D (2004) Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol 93:1178–1181PubMedCrossRefGoogle Scholar
  21. 21.
    Leclercq C, Faris O, Tunin R, et al (2002) Systolic improvement and mechanical resynchronization does notrequire electrical synchrony in the dilated failing heart with left bundlebranch block. Circulation 106:1760–1763PubMedCrossRefGoogle Scholar
  22. 22.
    Verbeek XA, Auricchio A, Yu Y, et al (2006) Tailoring cardiac resynchronization therapy using interventricular asynchrony. Validation of a simple model. Am J Physiol Heart Circ Physiol 290:H968–977PubMedCrossRefGoogle Scholar
  23. 23.
    Verbeek XA, Vernooy K, Peschar M, Cornelussen RN, Prinzen FW (2003) Intra-ventricular resynchronization for optimal left ventricular function during pacing in experimental left bundle branch block. J Am Coll Cardiol 42:558–567PubMedCrossRefGoogle Scholar
  24. 24.
    Verbeek XA, Vernooy K, Peschar M, Van Der Nagel T, Van Hunnik A, Prinzen FW (2002) Quantification of interventricular asynchrony during LBBB and ventricular pacing. Am J Physiol Heart Circ Physiol 283:H1370–1378PubMedGoogle Scholar
  25. 25.
    Abraham WT, Fisher WG, Smith AL, et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853PubMedCrossRefGoogle Scholar
  26. 26.
    Auricchio A, Stellbrink C, Butter C, et al (2003) Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 42:2109–2116PubMedCrossRefGoogle Scholar
  27. 27.
    Auricchio A, Stellbrink C, Sack S, et al (2002) Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 39:2026–2033PubMedCrossRefGoogle Scholar
  28. 28.
    Bristow MR, Saxon LA, Boehmer J, et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350: 2140–2150PubMedCrossRefGoogle Scholar
  29. 29.
    Cazeau S, Leclercq C, Lavergne T, et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880PubMedCrossRefGoogle Scholar
  30. 30.
    Cleland JG, Daubert JC, Erdmann E, et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549PubMedCrossRefGoogle Scholar
  31. 31.
    Reuter S, Garrigue S, Barold SS, et al (2002) Comparison of characteristics in responders versus nonresponders with biventricular pacing fordrug-resistant congestive heart failure. Am J Cardiol 89:346–350PubMedCrossRefGoogle Scholar
  32. 32.
    Young JB, Abraham WT, Smith AL, et al (2003) Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 289:2685–2694PubMedCrossRefGoogle Scholar
  33. 33.
    Bax JJ, Abraham T, Barold SS, et al (2005) Cardiac resynchronization therapy: Part 1 — Issues before device implantation. J Am Coll Cardiol 46: 2153–2167PubMedCrossRefGoogle Scholar
  34. 34.
    Helm RH, Leclercq C, Faris OP, et al (2005) Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111:2760–2767PubMedCrossRefGoogle Scholar
  35. 35.
    Wyman BT, Hunter WC, Prinzen FW, Faris OP, McVeigh ER (2002) Effects of single-and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 282:H372–379PubMedGoogle Scholar
  36. 36.
    Dohi K, Pinsky MR, Kanzaki H, Severyn D, Gorcsan J 3rd (2006) Effects of radial left ventricular dyssynchrony on cardiac performance using quantitative tissue Doppler radial strain imaging. J Am Soc Echocardiogr 19:475–482PubMedCrossRefGoogle Scholar
  37. 37.
    Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z (2004) Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr 17: 630–633PubMedCrossRefGoogle Scholar
  38. 38.
    Leitman M, Lysyansky P, Sidenko S, et al (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardialfunction. J Am Soc Echocardiogr 17:1021–1029PubMedCrossRefGoogle Scholar
  39. 39.
    Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J 3rd (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113:960–968PubMedCrossRefGoogle Scholar
  40. 40.
    Yu CM, Fung JW, Zhang Q, et al (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110: 66–73PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson L, Kim HK, Tanabe M, et al (2007) Differential effects of left ventricular pacing sites in a canine model of contraction dyssynchrony. Am J Physiol Heart Circ Physiol [Epub ahead of print]Google Scholar
  42. 42.
    Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240:H39–H44PubMedGoogle Scholar
  43. 43.
    Sade LE, Kanzaki H, Severyn D, Dohi K, Gorcsan J 3rd (2004) Quantification of radial mechanical dyssynchrony in patients with left bundle branch block and idiopathic dilated cardiomyopathy without conduction delay by tissue displacement imaging. Am J Cardiol 94: 514–518PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • B. Lamia
    • 1
  • M. R. Pinsky
    • 1
  1. 1.Department of Critical Care MedicineUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations