The Beneficial Effects of Increasing Blood Viscosity

  • B. Y. Salazar Vázquez
  • P. Cabrales
  • M. Intaglietta
Conference paper


Increased hematocrit above normal levels is usually associated with the elevation of mean systemic arterial blood pressure (MAP) due to increased blood viscosity as shown in studies where hematocrit was increased by 40% or more above baseline [1, 2]. This effect is related to the behavior of pressure in rigid tubes subjected to constant flow, in the presence of varying viscosity. Clinically and physiologically, this situation is encountered with pathologically high hematocrits [3] and in individuals adapted to high altitude with hematocrit levels of 75–91% [4]. Moderate hematocrit changes (and, therefore, changes in blood viscosity) due to variability in the normal population do not appear to affect MAP.


Hemorrhagic Shock Blood Viscosity Plasma Viscosity Plasma Expander Physiol Heart Circ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson TQ, Guyton AC (1959) Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am J Physiol 197:1167–1170Google Scholar
  2. 2.
    Lindenfeld J, Weil JV, Travis VL, Horwitz LD (2005) Regulation of oxygen delivery during induced polycythemia in exercising dogs. Am J Physiol Heart Circ Physiol 289:H1821–1825PubMedCrossRefGoogle Scholar
  3. 3.
    Bertinieri G, Parati G, Ullian L (1998) Hemodilution reduces clinic and ambulatory blood pressure in polycythemic patients. Hypertension 31:848–853PubMedGoogle Scholar
  4. 4.
    Jefferson JA, Escudero E, Alfaro RT, Schoene RB (2002) Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet 359:407–408PubMedCrossRefGoogle Scholar
  5. 5.
    Martini J, Carpentier B, Chavez Negrete A, Frangos JA, Intaglietta M (2005) Paradoxical hypotension following increased hematocrit and blood viscosity. Am J Physiol Heart Circ Physiol 289:H2136–2143Google Scholar
  6. 6.
    Martini J, Usai AG, Cabrales P, Johnson PC, Intaglietta M (2006) Increased cardiac output and microvascular blood flow during mild hemoconcentration in hamster window model. Am J Physiol Heart Circ Physiol 291:H310–317PubMedCrossRefGoogle Scholar
  7. 7.
    Kuchan MJ, Jo H, Frangos JA (1994) Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am J Physiol 267:C753–C758PubMedGoogle Scholar
  8. 8.
    Smiesko V, Johnson PC (1993) The arterial lumen is controlled by flow related shear stress. News Physiol Sci 8:34–38Google Scholar
  9. 9.
    Tsai AG, Acero C, Nance PR, et al (2005) Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288:H1730–1739PubMedCrossRefGoogle Scholar
  10. 10.
    Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production in cultured human endothelial cells. Science 227:1477–1479PubMedCrossRefGoogle Scholar
  11. 11.
    Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M (1998) Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skin fold model. Am J Physiol 275:H2170–H2180PubMedGoogle Scholar
  12. 12.
    Cabrales P, Tsai AG, Intaglietta M (2005) Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol 288:H1708–1716Google Scholar
  13. 13.
    Cabrales P, Tsai AG, Intaglietta M (2004) Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am J Physiol 287:H363–H373Google Scholar
  14. 14.
    Kerger H, Saltzman DJ, Menger MD, Messmer K, Intaglietta M (1996) Systemic and subcutaneous microvascular pO2 dissociation during 4-h hemorrhagic shock in conscious hamsters. Am J Physiol 270:H827–H836PubMedGoogle Scholar
  15. 15.
    Tsai AG, Johnson PC, Intaglietta M (2003) Oxygen gradients in the micro circulation. Physiol Rev 83:933–963PubMedGoogle Scholar
  16. 16.
    Chen RYZ, Carlin RD, Simchon S, Jan K-M, Chien S (1989) Effects of dextran-induced hyperviscosity on regional blood flow and hemodynamics in dogs. Am J Physiol 256:H898–H905PubMedGoogle Scholar
  17. 17.
    Waschke KF, Krieter H, Hagen G, Albrecht DM, van Ackern K, Kuchinsky W (1994) Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J Cereb Blood Flow Metab 14:871–876PubMedGoogle Scholar
  18. 18.
    Krieter H, Brückner UB, Kafaliakis F, Messmer K (1995) Does colloid induced plasma hyperviscosity in haemodilution jeopardize perfusion and oxygenation of vital organs? Acta Anaest Scand 39:326–244Google Scholar
  19. 19.
    Doss DN, Estafanous FG, Ferrario CM, Brum JM, Murray PA (1995) Mechanism of systemic vasodilation during normovolemic hemodilution. Anes Analg 81:30–34CrossRefGoogle Scholar
  20. 20.
    de Wit C, Schäfer C, von Bismark P, Bolz S, Pohl U (1997) Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo. Pflügers Arch 434:354–361PubMedCrossRefGoogle Scholar
  21. 21.
    Cabrales P, Tsai AG, Winslow RM, Intaglietta M (2005) Extreme hemodilution with PEGhemoglobin vs. PEG-albumin. Am J Physiol 289:H2392–2400Google Scholar
  22. 22.
    Lipowsky HH, S.U, Chien S (1980) In vivo measurements of apparent viscosity and microvessel hematocrit in the mesentery of the cat. Microvasc Res 19:297–310PubMedCrossRefGoogle Scholar
  23. 23.
    Mirhashemi S, Breit GA, Chávez RH, Intaglietta M (1988) Effects of hemodilution on skin microcirculation. Am J Physiol 254:H411–H416PubMedGoogle Scholar
  24. 24.
    Messmer K (1975) Hemodilution. Surg Clin N Am 55:659–678PubMedGoogle Scholar
  25. 25.
    Fan FC, Schuessler GB, Chen RYZ, Chien S (1980) Effect of hematocrit alteration on the regional hemodynamics and oxygen transport. Am J Physiol 238:H545–H552PubMedGoogle Scholar
  26. 26.
    Lipowsky HH, Firrell JC (1986) Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Physiol 250:H908–H922PubMedGoogle Scholar
  27. 27.
    Messmer K, Kreimeier U, Intaglietta M (1986) Present state of intentional hemodilution. Europ Surg Res 18:254–263CrossRefGoogle Scholar
  28. 28.
    Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activity. Ann Rev Biomed Eng 3:109–143CrossRefGoogle Scholar
  29. 29.
    Liao JC, Hein TW, Vaughn MW, Huang KT, Kuo L (1999) Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci U S A 96:8757–8761PubMedCrossRefGoogle Scholar
  30. 30.
    Rebel A, Lenz C, Krieter H, Waschke KF, Van Ackern K, Kuschinsky W (2001) Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. Am J Physiol Heart Circ Physiol 280:H2591–2597PubMedGoogle Scholar
  31. 31.
    Michelson E (1968) Anaphylactic reaction to dextrans. N Engl J Med 278:552PubMedGoogle Scholar
  32. 32.
    Ertesvag H, Hoidal HK, Schjerven H, Svanem BI, Valla S (1999) Mannuronan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1:262–269PubMedCrossRefGoogle Scholar
  33. 33.
    Ewald RA, Anderson P, Williams HL, Crosby WH (1964) Effects of intravenous infusions of feather keratin: Preliminary characterization and evaluation as a plasma expander. Proc Soc Exp Biol Med 115:130–133PubMedGoogle Scholar
  34. 34.
    Kerger H, Tsai AG, Saltzman DJ, Winslow RM, Intaglietta M (1997) Fluid resuscitation with O2 vs. non-O2 carriers after 2 h of hemorrhagic shock in conscious hamsters. Am J Physiol 272:H525–H537PubMedGoogle Scholar
  35. 35.
    Cabrales P, Nacharaju P, Manjula BN, Tsai AG, Acharya SA, Intaglietta M (2005) Early difference in tissue pH and microvascular hemodynamics in hemorrhagic shock resuscitation using polyethylene glycol-albumin-and hydroxyethyl starch-based plasma expanders. Shock 24:66–73PubMedCrossRefGoogle Scholar
  36. 36.
    Wettstein R, Erni D, Intaglietta M, Tsai AG (2006) Rapid restoration of microcirculatory blood flow with hyperviscous and hyperoncotic solutions lowers the transfusion trigger in resuscitation from hemorrhagic shock. Shock 25:641–646PubMedCrossRefGoogle Scholar
  37. 37.
    Cabrales P, Tsai AG, Intaglietta M (2004) Hyperosmotic-hyperoncotic vs. hyperosmotichyperviscous small volume resuscitation in hemorrhagic shock. Shock 22:431–437PubMedCrossRefGoogle Scholar
  38. 38.
    Wettstein R, Tsai AG, Erni D, Lukyanov AN, Torchilin VP, Intaglietta M (2004) Improving microcirculation is more effective than substitution of red blood cells to correct metabolic disorder in experimental hemorrhagic shock. Shock 21:235–240PubMedCrossRefGoogle Scholar
  39. 39.
    Cabrales P, Tsai AG, Intaglietta M (2007) Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation 72:306–318PubMedCrossRefGoogle Scholar
  40. 40.
    Hangai-Hoger N, Tsai AG, Cabrales P, Suematsu M, Intaglietta M (2007) Microvascular and systemic effects following top load administration of saturated carbon monoxide-saline solution. Crit Care Med 35:335–237CrossRefGoogle Scholar
  41. 41.
    Cabrales P, Tsai AG, Intaglietta M (2007) Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 27:380–389PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • B. Y. Salazar Vázquez
    • 1
  • P. Cabrales
    • 2
  • M. Intaglietta
    • 1
  1. 1.UCSD-BioengineeringLa JollaUSA
  2. 2.La Jolla Bioengineering InstituteLa JollaUSA

Personalised recommendations