Recent Advancements in Microcirculatory Image Acquisition and Analysis

  • R. Bezemer
  • M. Khalilzada
  • C. Ince
Conference paper


Since the introduction of orthogonal polarization spectral (OPS) imaging by Slaaf et al. and its implementation into a clinically-applicable hand-held microscope [1, 2], clinical microcirculation investigations have been carried out in various clinical scenarios on exposed organ and tissue surfaces [3, 4, 5, 6, 7, 8, 9]. OPS imaging has proved to be a useful modality to predict patient outcome, during disease and therapy, especially in intensive care and emergency medicine [4, 9]. OPS imaging has made an important clinical impact by assessment of the sublingual micro circulation during sepsis, shock, and resuscitation [10]. OPS imaging can be applied on numerous sites, ranging from the nailfold and sublingual microcirculation to the brain micro circulation [3, 11]. Very recently, OPS imaging was used to reveal microcirculatory alterations in malaria patients [12]. For this purpose, the investigators focused on the rectal microcirculation, since bruxism, a common feature of cerebral malaria, prevented oral introduction of the OPS probe. Additional applications of OPS imaging include wound healing and cancer and tumor development [11, 13]. Studies by several medical centers have shown that OPS observation of sublingual microcirculatory alterations (i.e., particularly changes in capillary perfusion) provided more sensitive information about patient outcome than conventional clinical parameters, such as systemic hemodynamic and oxygen derived variables [4, 6, 7, 9, 10].


Functional Capillary Density Endothelial Glycocalyx Microcirculatory Blood Flow Microcirculatory Perfusion Sidestream Dark Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slaaf DW, Tangelder GJ, Reneman RS, Jager K, Bollinger A (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–397PubMedGoogle Scholar
  2. 2.
    Groner W, Winkelman JW, Harris AG, et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212PubMedCrossRefGoogle Scholar
  3. 3.
    Mathura KR, Alic L, Ince C (2001) Initial clinical experience with OPS imaging for observation of the human microcirculation. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine, 2001. Springer-Verlag, Berlin, pp 233–245Google Scholar
  4. 4.
    Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early micro circulatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98PubMedCrossRefGoogle Scholar
  5. 5.
    Spronk PE, Ince C, Gardien MJ, et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396PubMedCrossRefGoogle Scholar
  6. 6.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  7. 7.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99PubMedCrossRefGoogle Scholar
  8. 8.
    Dubin A, Kanoore EVS, Pozo M, et al (2007) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med (in press)Google Scholar
  9. 9.
    Sakr Y, Chierego M, Piagnerelli M, et al (2007) Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35:1–6CrossRefGoogle Scholar
  10. 10.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(suppl 4):13–19CrossRefGoogle Scholar
  11. 11.
    Mathura KR, Bouma GJ, Ince C (2001) Abnormal microcirculation in brain tumors during surgery. Lancet 358:1698–1699PubMedCrossRefGoogle Scholar
  12. 12.
    Dondorp AM, Ince C, Tipmanee P, et al (2007) Direct in-vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis (in press)Google Scholar
  13. 13.
    Lindeboom JAH, Mathura KR, Aartman IH, Kroon F, Ince C (2007) The influence of the application of platelet enriched plasmas in oral mucosal wound healing. Clin Oral Impl Res 18:133–139CrossRefGoogle Scholar
  14. 14.
    Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114CrossRefGoogle Scholar
  15. 15.
    De Backer D, Hollenberg S, Boerma C et al. (2007) How to evaluate the microcirculation? Report of a round table conference. Crit Care 11:101–110CrossRefGoogle Scholar
  16. 16.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  17. 17.
    Boerma EC, Mathura KR, Van der Voort PHJ, Spronk PE, Ince C (2005) Quantifying bedsidederived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9:601–606.CrossRefGoogle Scholar
  18. 18.
    Klyscz T, Jünger M, Jung F, Zeintl H (1997) Cap Image —ein neuartiges computerunterstütztes Videobildanalysesystem für die dynamische Kapillarmikroskopie. Biomed Technik Band 42 Heft 6:168–175Google Scholar
  19. 19.
    Ellis CG, Ellsworth ML, Pittman RN, Burgess WL (1992) Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvasc Res 44:214–225PubMedCrossRefGoogle Scholar
  20. 20.
    Schaudig S, Dadasch B, Kellam KR, Christ F (2001) Validation of an analysis software for OPS imaging used in humans. Proceedings of the 7th World Congress for Microcirculation: 2–59Google Scholar
  21. 21.
    Steger C (1998) An unbiased detector of curvilinear structures. IEEE T Pattern Anal 20: 113–125CrossRefGoogle Scholar
  22. 22.
    Jähne B (2005) The structure tensor. In: Jähne B (ed) Digital Image Processing, 6th edition. Sringer-Verlag, Berlin, pp 364–368Google Scholar
  23. 23.
    Lo RC, Tsai WH (1995) Gray-scale Hough transform for thick line detection in gray-scale images. Int J Pattern Recog 28:647–661CrossRefGoogle Scholar
  24. 24.
    Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES (2005) The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 16:507–511PubMedCrossRefGoogle Scholar
  25. 25.
    Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 277:508–514Google Scholar
  26. 26.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100:7988–7995PubMedCrossRefGoogle Scholar
  27. 27.
    Mochizuki S, Vink H, Hiramatsu O, et al (2003) Role of hyaluronic acid in shear induced endothelium derived nitric oxide release. Am J Physiol 285:722–726Google Scholar
  28. 28.
    Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:136–142CrossRefGoogle Scholar
  29. 29.
    Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a bumper-car model. Proc Natl Acad Sci USA 101:16483–16488PubMedCrossRefGoogle Scholar
  30. 30.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedCrossRefGoogle Scholar
  31. 31.
    Van den Berg BM, Spaan JAE, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima media ratios at the murine carotid artery bifurcation. Am J Physiol 290:915–920Google Scholar
  32. 32.
    Wang S, Okano M, Yoshida (1991) Ultrastructure of endothelial cells and lipid deposition on the flow dividers of branchiocephalic and left subclavian arterial bifurcations of the rabbit aorta. J Jpn Atheroscler Soc 19:1089–1100Google Scholar
  33. 33.
    Constantinescu AA, Vink H, Spaan JAE (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23: 1541–1547PubMedCrossRefGoogle Scholar
  34. 34.
    Henry CB, Duling BR (2000) TNF-a increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol 279:2815–2823Google Scholar
  35. 35.
    Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and 4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272: 14713–14720PubMedCrossRefGoogle Scholar
  36. 36.
    Gouveneur M, Van den Berg BM, Nieuwdorp M, Stroes E, Vink H (2006) Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med 259: 393–400CrossRefGoogle Scholar
  37. 37.
    Nieuwdorp M, Holleman F, de Groot E, et al (2007) Perturbation of hyaluronan metabolism predisposes patients with type 1 diabetes mellitus to atherosclerosis. Diabetologia 50:1288–1293PubMedCrossRefGoogle Scholar
  38. 38.
    Nieuwdorp M, Mooij HL, Kroon J, et al (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132PubMedCrossRefGoogle Scholar
  39. 39.
    Van den Berg BM, Nieuwdorp M, Stroes E, Vink H (2006) Glycocalyx and endothelial (dys)-function: from mice to men. Pharmacol Rep 58:75–80PubMedGoogle Scholar
  40. 40.
    Luft JH (1966) Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Microcirc Symp Fed Proc 25:1773–1783Google Scholar
  41. 41.
    Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589PubMedGoogle Scholar
  42. 42.
    Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822PubMedCrossRefGoogle Scholar
  43. 43.
    Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2004) Sublingual capnometry tracks microcirculatory changes in septic patients. Crit Care Med 32:516–523Google Scholar
  44. 44.
    Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantification of severity of circulatory shock. Crit Care Med 27:1225–1229.PubMedCrossRefGoogle Scholar
  45. 45.
    Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927PubMedCrossRefGoogle Scholar
  46. 46.
    Bezemer R, Legrand M, Ince C (2007) Simultaneous sidestream dark field imaging of the microcirculation and spatially-confined tissue capnography on a rat kidney undergoing ischemia/reperfusion. Microcirculation 14: 475 (abst)Google Scholar
  47. 47.
    Johannes T, Mik EG, Nohé B, Raat NJH, Unertl KE, Ince C (2006) Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia. Crit Care 10:R88PubMedCrossRefGoogle Scholar
  48. 48.
    Lindert J, Werner J, Redlin M, Kuppe H, Habazettl H, Pries AR (2002) OPS imaging of human microcirculation: a short technical report. J Vasc Res 39:368–372PubMedCrossRefGoogle Scholar
  49. 49.
    Styp-Rekowska B, Disassa NM, Reglin B, et al (2007) An imaging spectroscopy approach for measurement of oxygen saturation and hematocrit during intravital microscopy. Microcirculation 14:207–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • R. Bezemer
    • 1
  • M. Khalilzada
    • 1
  • C. Ince
    • 1
  1. 1.Department of Physiology Academic Medical CenterUniversity of AmsterdamAmsterdamNetherlands

Personalised recommendations