Skip to main content

Early Optimization of Oxygen Delivery in High-risk Surgical Patients

  • Conference paper
Book cover Intensive Care Medicine

Abstract

Total tissue perfusion relies on adequate arterial oxygen saturation, cardiac output, and hemoglobin concentration, and global perfusion is usually assessed by calculation of the oxygen delivery index (DO2I) [1]. More than 20 years ago Shoemaker et al. reported that perioperative alterations in DO2 were closely correlated to the development of multiple organ failure (MOF) and death [2]. Since then goal-directed therapy, defined as the use of the cardiac output or a surrogate to guide intravenous fluid and inotropic therapy, has been used in an attempt to improve outcome in surgical patients [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tote SP, Grounds RM (2006) Performing perioperative optimization of the high-risk surgical patient. Br J Anaesth 97:4–11

    Article  PubMed  CAS  Google Scholar 

  2. Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DW (1993) Physiologic patterns in surviving and nonsurviving shock patients. Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg 106:630–636

    Google Scholar 

  3. Meregalli A, Oliveira RP, Friedman G (2004) Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 8: R60–65

    Article  PubMed  Google Scholar 

  4. McNelis J, Marini CP, Jurkiewicz A, et al (2001) Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg 182:481–485

    Article  PubMed  CAS  Google Scholar 

  5. Rady MY, Rivers EP, Nowak RM (1996) Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 14:218–225

    Article  PubMed  CAS  Google Scholar 

  6. Shires GT, Brown F (1961) Acute changes in extracellular fluids associated with major surgical procedures. Ann Surg 154:803–810

    Article  PubMed  CAS  Google Scholar 

  7. Brandstrup B, Svensen C, Engquist A (2006) Hemorrhage and operation cause a contraction of the extracellular space needing replacement — evidence and implications? A systematic review. Surgery 139:419–432

    Google Scholar 

  8. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  9. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    PubMed  CAS  Google Scholar 

  10. Gan TJ, Soppitt A, Maroof M, et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  11. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimization and length of stay after repair of proximal femoral fracture: Randomized control trial. BMJ 315:909–912

    PubMed  CAS  Google Scholar 

  12. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P (2002) Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 88:65–71

    Article  PubMed  CAS  Google Scholar 

  13. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    Article  PubMed  Google Scholar 

  14. Polenen P, Ruokonen E, Hippelainen M, Pöyhönen M, Takala J (2000) A prospective randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  Google Scholar 

  15. Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C (2002) Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia 57:845–849

    Article  PubMed  CAS  Google Scholar 

  16. Solus-Biguenet H, Fleyfel M, Tavernier B, et al (2006) Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth 97:808–816

    Article  PubMed  CAS  Google Scholar 

  17. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186

    Article  PubMed  CAS  Google Scholar 

  18. Boyd O, Grounds M, Bennett D (1993) Preoperative increase of oxygen delivery reduces mortality in high-risk surgical patients. JAMA 270:2699–2707

    Article  PubMed  CAS  Google Scholar 

  19. Wilson J, Woods I, Fawcett J, et al (1999) Reducing the risk of major surgery: Randomized controlled trial of preoptimization of oxygen delivery. BMJ 318:1099–1103

    PubMed  CAS  Google Scholar 

  20. Lobo SMA, Salgado PF, Castillo VGT, et al (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high risk surgical patients. Crit Care Med 28:3396–3404

    Article  PubMed  CAS  Google Scholar 

  21. Berlauk JF, Abrams JH, Gilmour IJ, O’Connor SR, Knighton DR, Cerra FB (1991) Pre-operative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. Ann Surg 214:289–297

    Article  PubMed  CAS  Google Scholar 

  22. Bender JS, Smith-Meek MA, Jones CE (1997) Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg 226:229–236

    Article  PubMed  CAS  Google Scholar 

  23. Valentine RJ, Duke ML, Inman MH, et al (1998) Effectiveness of pulmonary artery catheters in aortic surgery: A randomized trial. J Vasc Surg 27:203–212

    Article  PubMed  CAS  Google Scholar 

  24. Ziegler DW, Wright JG, Choban PS, Flancbaum L (1997) A prospective randomized trial of preoperative “optimization” of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery 122:584–592

    Article  PubMed  CAS  Google Scholar 

  25. Lopes M, Lopes MR, Oliveira MA, et al (2007) Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11:R100

    Article  PubMed  Google Scholar 

  26. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goaldirected therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–693

    Article  PubMed  Google Scholar 

  27. Balogh Z, McKinley BA, Cocanour C, et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:637–643

    Article  PubMed  Google Scholar 

  28. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  29. Pinsky MR (2007) Heart failure as a co-morbidity in the ICU. In: J L Vincent (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 110–118

    Google Scholar 

  30. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  31. Older P, Hall A, Hader R (1999) Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest 116:355–362

    Article  PubMed  CAS  Google Scholar 

  32. Toller WG; Metzler H (2005) Acute perioperative heart failure. Curr Opin Anesthesiol 18: 129–135

    Article  Google Scholar 

  33. Lobo SM, Lobo FR, Polachini CA, et al (2006) Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care 10:R72

    Article  PubMed  Google Scholar 

  34. Svensen CH, Olsson J, Hahn R (2006) Intravascular fluid administration and hemodynamic performance during open abdominal surgery. Anesth Analg 103:671–676

    Article  PubMed  Google Scholar 

  35. De Backer D, Creteur J, Dubois MJ, et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  PubMed  Google Scholar 

  36. Stone MD, Wilson RJ, Cross J, Williams BT (2003) Effect of adding dopexamine to intraoperative volume expansion in patients undergoing major elective abdominal surgery. Br J Anaesth 91:619–624

    Article  PubMed  CAS  Google Scholar 

  37. Takala J, Meier-Hellmann A, Eddleston J, Hulstaert P, Sramek V (2000) Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med 28:3417–3423

    Article  PubMed  CAS  Google Scholar 

  38. Arantes AS, Christiano AC, Abreu SP, et al (2007) Low-doses dobutamine and fluids in high-risk surgical patients: Effects on tissue perfusion, inflammatory response and morbidity. Revista Brasileira de Terapia Intensiva 19:5–13

    Article  Google Scholar 

  39. Chaney JC, Derdak S (2002) Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technology. Crit Care Med 30:2338–2345

    Article  PubMed  Google Scholar 

  40. Marik PE, Baram M (2007) Noninvasive hemodynamic monitoring in the intensive care unit. Crit Care Clin 23:383–400

    Article  PubMed  CAS  Google Scholar 

  41. Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care 8:257–261

    Article  PubMed  Google Scholar 

  42. Brandstrup B, Tønnesen H, Beier-Holgersen R, et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    Article  PubMed  Google Scholar 

  43. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103: 25–32

    Article  PubMed  Google Scholar 

  44. Cullinane M, Gray AJ, Hargraves CM, Lansdown M, Martin IC, Schubert M (2003) The 2003 Report of the National Confidential Enquiry into Peri-Operative Deaths NCEPOD, London

    Google Scholar 

  45. Pearse RM, Harrison DA, James P, et al (2006) Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care 10:R81

    Article  PubMed  Google Scholar 

  46. Older P, Smith R, Courtney P, Hone R (1993) Preoperative evaluation of cardiac failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest 104:701–704

    Article  PubMed  CAS  Google Scholar 

  47. Hlatky MA, Boineau RE, Higginbotham MB, et al (1989) A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 64:651–654

    Article  PubMed  CAS  Google Scholar 

  48. Girish M, Trayner E Jr, Dammann O, Pinto-Plata V, Celli B (2001) Symptom-limited stair climbing as a predictor of postoperative cardiopulmonary complications after high-risk surgery. Chest 120:1147–1151

    Article  PubMed  CAS  Google Scholar 

  49. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Changes in central venous saturation after major surgery, and association with outcome. Crit Care 9: R694–699

    Article  PubMed  Google Scholar 

  50. Maillet JM, Le Besnerais P, Cantoni M, et al (2003) Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery Chest 123:1361–1366

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media Inc.

About this paper

Cite this paper

Lobo, S.M., Rezende, E., Suparregui Dias, F. (2008). Early Optimization of Oxygen Delivery in High-risk Surgical Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77383-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77383-4_61

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77382-7

  • Online ISBN: 978-0-387-77383-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics