From Hemodynamics To Proteomics: Unraveling the Complexity of Acute Kidney Injury in Sepsis

  • M. Matejovic
  • P. Radermacher
  • V. Thongboonkerd
Conference paper


Sepsis is a complex syndrome characterized by an uncontrolled and deregulated systemic inflammatory response to infection. This is mediated by a broad spectrum of endogenous mediators whose actions result in multiple organ dysfunction distant from the original focus of infection. The kidney is a common ‘victim organ’ of various insults in critically ill patients. Sepsis and septic shock are the dominant causes of acute kidney injury (AKI), accounting for nearly 50% of episodes of acute renal failure [1]. The incidence of AKI in sepsis increases proportionally with the severity of sepsis, with AKI developing in 19% of patients with sepsis, 23% of those with severe sepsis, and 51% of patients with septic shock [2]. The mortality of sepsis patients with co-existing acute renal failure reaches 70%, thereby outstripping that of patients with other causes of AKI [3]. Interestingly, even relatively minor increments in serum creatinine levels coincide with markedly increased morbidity and mortality [4], highlighting the potentially important role of kidney dysfunction during the natural history of critical illness. However, the precise understanding of the multifactorial mechanisms of sepsis-induced AKI that would allow the development of new therapeutic strategies to prevent AKI or to hasten its recovery remains a mystery. Here, we review the most recent advances in the understanding of the molecular mechanisms and pathophysiology of sepsis-induced AKI, focusing on renal hemodynamic and microvascular changes and on the importance of a rapidly evolving proteomics approach to evaluating sepsis-induced kidney dysfunction.


Septic Shock Acute Renal Failure Acute Kidney Injury Renal Blood Flow Efferent Arteriole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169PubMedCrossRefGoogle Scholar
  2. 2.
    Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273:117–123PubMedCrossRefGoogle Scholar
  3. 3.
    Bagshaw SM, Uchino S, Bellomo R, et al (2007) Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–499PubMedCrossRefGoogle Scholar
  4. 4.
    Chertow GM, Soroko SH, Paganini EP, et al (2006) Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70:1120–1126PubMedCrossRefGoogle Scholar
  5. 5.
    Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805PubMedCrossRefGoogle Scholar
  6. 6.
    Gill N, Nally JV Jr, Fatica RA (2005) Renal failure secondary to acute tubular necrosis: epidemiology, diagnosis, and management. Chest 128:2847–2863PubMedCrossRefGoogle Scholar
  7. 7.
    Langenberg C, Bellomo R, Maz C, Wan L, Moritoki E, Morgera S (2005) Renal blood flow in sepsis. Crit Care 9:R363–R374PubMedCrossRefGoogle Scholar
  8. 8.
    Bellomo R, Bagshaw S, Langenberg C, Ronco C (2007) Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156:1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedCrossRefGoogle Scholar
  10. 10.
    Langenberg C, Bellomo R, May CN, Egi M, Wan L, Morgera S (2006) Renal vascular resistance in sepsis. Nephron Physiol 104:1–11CrossRefGoogle Scholar
  11. 11.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup (2004) Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212Google Scholar
  12. 12.
    Langenberg C, Wan L, Egi M, May CN, Bellomo R (2006) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002PubMedCrossRefGoogle Scholar
  13. 13.
    Langenberg C, Wan L, Egi M, May CN, Bellomo R (2007) Renal blood flow and function during recovery from experimental septic acute kidney injury Intensive Care Med 33:1614–1618PubMedCrossRefGoogle Scholar
  14. 14.
    Di Giantomasso D, Morimatsu H, May CN, Bellomo R (2003) Intrarenal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit Care Med 31:2509–2513PubMedCrossRefGoogle Scholar
  15. 15.
    Wan L, Bellomo R, Di Giantomasso D, Ronco C (2003) The pathogenesis of septic acute renal failure. Curr Opin Crit Care 9:496–502PubMedCrossRefGoogle Scholar
  16. 16.
    Vincent JL, De Backer D (2005) Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit Care 9(suppl 4):S9–S12PubMedCrossRefGoogle Scholar
  17. 17.
    Lugon JR, Boim MA, Ramos OL, et al (1989) Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 36:570–575PubMedCrossRefGoogle Scholar
  18. 18.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142:510–524PubMedGoogle Scholar
  19. 19.
    De Vriese AS, Bourgeois M (2003) Pharmacologic treatment of acute renal failure in sepsis. Curr Opin Crit Care 9:474–480PubMedCrossRefGoogle Scholar
  20. 20.
    Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96:576–582PubMedCrossRefGoogle Scholar
  21. 21.
    Yamaguchi N, Jesmin S, Zaedi S, et al (2006) Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides 27:2258–2270PubMedCrossRefGoogle Scholar
  22. 22.
    Matejovic M, Radermacher P, Joannidis M (2007) Acute kidney injury in sepsis: Is renal blood flow more than just an innocent bystander? Intensive Care Med 33:1498–1500PubMedCrossRefGoogle Scholar
  23. 23.
    Brezis M, Rosen S (1995) Hypoxia of the renal medulla-its implications for disease. N Engl J Med 332:647–655PubMedCrossRefGoogle Scholar
  24. 24.
    Molitoris BA, Sutton TA (2004) Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 66:496–499PubMedCrossRefGoogle Scholar
  25. 25.
    Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR (2005) Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol 289:F1324–F1332PubMedCrossRefGoogle Scholar
  26. 26.
    Yasuda H, Yuen PS, Hu X, Zhou H, Star RA (2006) Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int 69:1535–1542PubMedCrossRefGoogle Scholar
  27. 27.
    Wu L, Tiwari MM, Messer KJ, et al (2007) Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. Am J Physiol Renal Physiol 292:F261–F268PubMedCrossRefGoogle Scholar
  28. 28.
    Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated protein C ameliorates LPS-induced acute kidney injury and down-regulates renal iNOS and angiotensin 2. Am J Physiol Renal Physiol 293:F245–54PubMedCrossRefGoogle Scholar
  29. 29.
    Wu L, Gokden N, Mayeux PR (2007) Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. J Am Soc Nephrol 18:1807–1815PubMedCrossRefGoogle Scholar
  30. 30.
    Matejovic M, Krouzecky A, Martinkova V, et al (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465PubMedCrossRefGoogle Scholar
  31. 31.
    Matejovic M, Krouzecky A, Martinkova V, et al (2005) Effects of tempol, a free radical scavenger, on long-term hyperdynamic porcine bacteremia. Crit Care Med 33:1057–1063PubMedCrossRefGoogle Scholar
  32. 32.
    Heemskerk S, Pickkers P, Bouw MP, et al (2006) Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin J Am Soc Nephrol 1:853–862PubMedCrossRefGoogle Scholar
  33. 33.
    Horbelt M, Lee SY, Mang HE, et al (2007) Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 293:F688–F695PubMedCrossRefGoogle Scholar
  34. 34.
    Barth E, Bassi G, Maybauer M, et al (2008) Effects of ventilation with 100% oxygen during early hyperdynamic porcine fecal peritonitis. Crit Care Med (in press)Google Scholar
  35. 35.
    Peng J Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091Google Scholar
  36. 36.
    Fliser D, Novak J, Thongboonkerd V, et al (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071PubMedCrossRefGoogle Scholar
  37. 37.
    Thongboonkerd V (2007) Recent progress in urinary proteomics. Proteomics Clin Appl 1: 780–791CrossRefGoogle Scholar
  38. 38.
    Mischak H, Julian BA, Novak J (2007) High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 1:792–804CrossRefGoogle Scholar
  39. 39.
    Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, Zhang XL (2006) Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease. Am J Nephrol 26:483–490PubMedCrossRefGoogle Scholar
  40. 40.
    Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10:503–511PubMedCrossRefGoogle Scholar
  41. 41.
    Vogt JA, Hunzinger C, Schroer K, et al (2005) Determination of fractional synthesis rates of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal Chem 77:2034–2042PubMedCrossRefGoogle Scholar
  42. 42.
    Kalenka A, Feldmann RE, Jr., Otero K, Maurer MH, Waschke KF, Fiedler F (2006) Changes in the serum proteome of patients with sepsis and septic shock. Anesth Analg 103:1522–1526PubMedCrossRefGoogle Scholar
  43. 43.
    Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB (2006) A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 32:1252–1262PubMedCrossRefGoogle Scholar
  44. 44.
    Holly MK, Dear JW, Hu X, et al (2006) Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney Int 70:496–506PubMedGoogle Scholar
  45. 45.
    Buhimschi CS, Buhimschi IA, Abdel-Razeq S, et al (2007) Proteomic biomarkers of intraamniotic inflammation: relationship with funisitis and early-onset sepsis in the premature neonate. Pediatr Res 61:318–324PubMedCrossRefGoogle Scholar
  46. 46.
    Ren Y, Wang J, Xia J, et al (2007) The alterations of mouse plasma proteins during septic development. J Proteome Res 6:2812–2821PubMedCrossRefGoogle Scholar
  47. 47.
    Dear JW, Leelahavanichkul A, Aponte A, et al (2007) Liver proteomics for therapeutic drug discovery: Inhibition of the cydophilin receptor CD147 attenuates sepsis-induced acute renal failure. Crit Care Med 35:2319–2328PubMedCrossRefGoogle Scholar
  48. 48.
    Nguyen MT, Ross GF, Dent CL, Devarajan P (2005) Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 25:318–326PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou H, Pisitkun T, Aponte A, et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857PubMedCrossRefGoogle Scholar
  50. 50.
    Vanhoutte KJ, Laarakkers C, Marchiori E, et al (2007) Biomarker discovery with SELDI-TOF MS in human urine associated with early renal injury: evaluation with computational analytical tools. Nephrol Dial Transplant 22:2932–2943PubMedCrossRefGoogle Scholar
  51. 51.
    Korrapati MC, Chilakapati J, Witzmann FA, Chundury R, Lock EA, Mehendale HM (2007) Proteomics of S-(1, 2-dichlorovinyl)-L-cysteine-induced acute renal failure and autoprotection in mice. Am J Physiol Renal Physiol 293:F994–1006PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • M. Matejovic
    • 1
  • P. Radermacher
    • 2
  • V. Thongboonkerd
    • 3
  1. 1.1st Medical Department, ICUChaires University Medical Schooland Teaching HospitalPlzenCzech Republic
  2. 2.Dept of AnesthesiaUniversity HospitalUlmGermany
  3. 3.Medical Molecular Biology Unit Office for Research and Development Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations