Role of Poly(ADP-Ribose) Polymerase in Acute Kidney Injury

  • R. Vaschetto
  • F. B. Plötz
  • A. B. J. Groeneveld
Conference paper


Acute renal failure or acute kidney injury (AKI) is common in critically ill patients and carries significant morbidity and mortality. AKI has been used to describe the fullblown clinical picture of, predominantly, acute tubular necrosis following ischemic or nephrotoxic injury. Once risk factors for impending renal failure have been recognized, current clinical management is hardly able to beneficially affect the natural course, so that renal replacement therapy has to be instituted when hyperkalemia, overhydration, or other detrimental sequelae of AKI occur [1, 2, 3]. A better understanding of early mechanisms could help to design trials in the future to attenuate the development of AKI in high-risk patients. These mechanisms are, however, still poorly understood.


Acute Renal Failure Proximal Tubule Acute Kidney Injury Renal Injury Acute Tubular Necrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kikeri D, Pennell JP, Hwang KH, Jacob AI, Richman AV, Bourgoignie JJ (1986) Endotoxemic acute renal failure in awake rats. Am J Physiol 250:F1098–F1106PubMedGoogle Scholar
  2. 2.
    Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460PubMedCrossRefGoogle Scholar
  3. 3.
    Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430PubMedGoogle Scholar
  4. 4.
    Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49PubMedCrossRefGoogle Scholar
  5. 5.
    Versteilen AM, Di Maggio F, Leemreis JR, Groeneveld AB, Musters RJ, Sipkema P (2004) Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 27:1019–1029PubMedGoogle Scholar
  6. 6.
    Kaushal GP, Basnakian AG, Shah SV (2004) Apoptotic pathways in ischemic acute renal failure. Kidney Int 66:500–506PubMedCrossRefGoogle Scholar
  7. 7.
    Smith S (2001) The world according to PARP. Trends Biochem Sci 26:174–179PubMedCrossRefGoogle Scholar
  8. 8.
    Oliver FJ, Menissier-de Murcia J, Nacci C, et al (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454PubMedCrossRefGoogle Scholar
  9. 9.
    Chang WJ, Alvarez-Gonzalez R (2001) The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. J Biol Chem 276:47664–47670PubMedCrossRefGoogle Scholar
  10. 10.
    Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO (2001) The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 276:45588–45597PubMedCrossRefGoogle Scholar
  11. 11.
    Andreone TL, O’Connor M, Denenberg A, Hake PW, Zingarelli B (2003) Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170:2113–2120PubMedGoogle Scholar
  12. 12.
    Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669PubMedCrossRefGoogle Scholar
  13. 13.
    Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446–454PubMedCrossRefGoogle Scholar
  14. 14.
    Yu SW, Wang H, Poitras MF, et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263PubMedCrossRefGoogle Scholar
  15. 15.
    Susin SA, Lorenzo HK, Zamzami N, et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedCrossRefGoogle Scholar
  16. 16.
    Virag L (2005) The expanding universe of poly(ADP-ribosyl)ation. Cell Mol Life Sci 62: 719–720PubMedCrossRefGoogle Scholar
  17. 17.
    Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-mediated cell injury in acute renal failure. Pharmacol Res 52:44–59PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 288:F387–F398PubMedCrossRefGoogle Scholar
  19. 19.
    Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C (2000) Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J 14:641–651PubMedGoogle Scholar
  20. 20.
    Chatterjee PK, Chatterjee BE, Pedersen H, et al (2004) 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int 65:499–509PubMedCrossRefGoogle Scholar
  21. 21.
    Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840PubMedGoogle Scholar
  22. 22.
    Gonzalez-Flecha B, Boveris A (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta 1243:361–366PubMedGoogle Scholar
  23. 23.
    Karasawa A, Kubo K (1990) Protection by benidipine hydrochloride (KW-3049), a calcium antagonist, of ischemic kidney in rats via inhibitions of Ca-overload, ATP-dedine and lipid peroxidation. Jpn J Pharmacol 52:553–562PubMedCrossRefGoogle Scholar
  24. 24.
    Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, Shulman RG (1986) Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci USA 83:6142–6145PubMedCrossRefGoogle Scholar
  25. 25.
    Stone DH, Al-Badawi H, Conrad MF, et al (2005) PJ34, a poly-ADP-ribose polymerase inhibitor, modulates renal injury after thoracic aortic ischemia/reperfusion. Surgery 138:368–374PubMedCrossRefGoogle Scholar
  26. 26.
    Hauser B, Groger M, Ehrmann U, et al (2006) The parp-1 inhibitor ino-1001 facilitates hemo-dynamic stabilization without affecting DNA repair in porcine thoracic aortic cross-clamping-induced ischemia/reperfusion. Shock 25:633–640PubMedCrossRefGoogle Scholar
  27. 27.
    Mangino MJ, Ametani M, Szabo C, Southard JH (2004) Poly(ADP-ribose) polymerase and renal hypothermic preservation injury. Am J Physiol Renal Physiol 286:F838–F847PubMedCrossRefGoogle Scholar
  28. 28.
    McDonald MC, Filipe HM, Thiemermann C (1999) Effects of inhibitors of the activity of poly (ADP-ribose) synthetase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol 128:1339–1345PubMedCrossRefGoogle Scholar
  29. 29.
    Jagtap P, Soriano FG, Virag L, et al (2002) Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit Care Med 30:1071–1082PubMedCrossRefGoogle Scholar
  30. 30.
    Racz I, Tory K, Gallyas F Jr, et al (2002) BGP-15 — a novel poly(ADP-ribose) polymerase inhibitor — protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem Pharmacol 63:099–1111CrossRefGoogle Scholar
  31. 31.
    Burkle A, Chen G, Kupper JH, Grube K, Zeller WJ (1993) Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis 14:559–561PubMedCrossRefGoogle Scholar
  32. 32.
    Shino Y, Itoh Y, Kubota T, Yano T, Sendo T, Oishi R (2003) Role of poly(ADP-ribose)polymerase in cisplatin-induced injury in LLC-PK1 cells. Free Radic Biol Med 35:966–977PubMedCrossRefGoogle Scholar
  33. 33.
    Graziani G, Szabo C (2005) Clinical perspectives of PARP inhibitors. Pharmacol Res 52:109–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • R. Vaschetto
    • 1
  • F. B. Plötz
    • 2
  • A. B. J. Groeneveld
    • 3
  1. 1.Faculty of MedicineUniversity of Eastern PiedmontNovaraItaly
  2. 2.Department of Pediatric Intensive CareVrije Universiteit Medical CentreAmsterdamNetherlands
  3. 3.Department of Intensive CareVrije Universiteit Medical CentreAmsterdamNetherlands

Personalised recommendations