Skip to main content

Role of Poly(ADP-Ribose) Polymerase in Acute Kidney Injury

  • Conference paper
Intensive Care Medicine

Abstract

Acute renal failure or acute kidney injury (AKI) is common in critically ill patients and carries significant morbidity and mortality. AKI has been used to describe the fullblown clinical picture of, predominantly, acute tubular necrosis following ischemic or nephrotoxic injury. Once risk factors for impending renal failure have been recognized, current clinical management is hardly able to beneficially affect the natural course, so that renal replacement therapy has to be instituted when hyperkalemia, overhydration, or other detrimental sequelae of AKI occur [13]. A better understanding of early mechanisms could help to design trials in the future to attenuate the development of AKI in high-risk patients. These mechanisms are, however, still poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kikeri D, Pennell JP, Hwang KH, Jacob AI, Richman AV, Bourgoignie JJ (1986) Endotoxemic acute renal failure in awake rats. Am J Physiol 250:F1098–F1106

    PubMed  CAS  Google Scholar 

  2. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  PubMed  CAS  Google Scholar 

  3. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    PubMed  CAS  Google Scholar 

  4. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49

    Article  PubMed  CAS  Google Scholar 

  5. Versteilen AM, Di Maggio F, Leemreis JR, Groeneveld AB, Musters RJ, Sipkema P (2004) Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 27:1019–1029

    PubMed  CAS  Google Scholar 

  6. Kaushal GP, Basnakian AG, Shah SV (2004) Apoptotic pathways in ischemic acute renal failure. Kidney Int 66:500–506

    Article  PubMed  CAS  Google Scholar 

  7. Smith S (2001) The world according to PARP. Trends Biochem Sci 26:174–179

    Article  PubMed  CAS  Google Scholar 

  8. Oliver FJ, Menissier-de Murcia J, Nacci C, et al (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454

    Article  PubMed  CAS  Google Scholar 

  9. Chang WJ, Alvarez-Gonzalez R (2001) The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. J Biol Chem 276:47664–47670

    Article  PubMed  CAS  Google Scholar 

  10. Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO (2001) The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 276:45588–45597

    Article  PubMed  CAS  Google Scholar 

  11. Andreone TL, O’Connor M, Denenberg A, Hake PW, Zingarelli B (2003) Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170:2113–2120

    PubMed  CAS  Google Scholar 

  12. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  13. Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446–454

    Article  PubMed  CAS  Google Scholar 

  14. Yu SW, Wang H, Poitras MF, et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  PubMed  CAS  Google Scholar 

  15. Susin SA, Lorenzo HK, Zamzami N, et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  16. Virag L (2005) The expanding universe of poly(ADP-ribosyl)ation. Cell Mol Life Sci 62: 719–720

    Article  PubMed  CAS  Google Scholar 

  17. Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-mediated cell injury in acute renal failure. Pharmacol Res 52:44–59

    Article  PubMed  CAS  Google Scholar 

  18. Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 288:F387–F398

    Article  PubMed  CAS  Google Scholar 

  19. Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C (2000) Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J 14:641–651

    PubMed  CAS  Google Scholar 

  20. Chatterjee PK, Chatterjee BE, Pedersen H, et al (2004) 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int 65:499–509

    Article  PubMed  CAS  Google Scholar 

  21. Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840

    PubMed  CAS  Google Scholar 

  22. Gonzalez-Flecha B, Boveris A (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta 1243:361–366

    PubMed  Google Scholar 

  23. Karasawa A, Kubo K (1990) Protection by benidipine hydrochloride (KW-3049), a calcium antagonist, of ischemic kidney in rats via inhibitions of Ca-overload, ATP-dedine and lipid peroxidation. Jpn J Pharmacol 52:553–562

    Article  PubMed  CAS  Google Scholar 

  24. Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, Shulman RG (1986) Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci USA 83:6142–6145

    Article  PubMed  CAS  Google Scholar 

  25. Stone DH, Al-Badawi H, Conrad MF, et al (2005) PJ34, a poly-ADP-ribose polymerase inhibitor, modulates renal injury after thoracic aortic ischemia/reperfusion. Surgery 138:368–374

    Article  PubMed  Google Scholar 

  26. Hauser B, Groger M, Ehrmann U, et al (2006) The parp-1 inhibitor ino-1001 facilitates hemo-dynamic stabilization without affecting DNA repair in porcine thoracic aortic cross-clamping-induced ischemia/reperfusion. Shock 25:633–640

    Article  PubMed  CAS  Google Scholar 

  27. Mangino MJ, Ametani M, Szabo C, Southard JH (2004) Poly(ADP-ribose) polymerase and renal hypothermic preservation injury. Am J Physiol Renal Physiol 286:F838–F847

    Article  PubMed  CAS  Google Scholar 

  28. McDonald MC, Filipe HM, Thiemermann C (1999) Effects of inhibitors of the activity of poly (ADP-ribose) synthetase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol 128:1339–1345

    Article  PubMed  CAS  Google Scholar 

  29. Jagtap P, Soriano FG, Virag L, et al (2002) Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit Care Med 30:1071–1082

    Article  PubMed  CAS  Google Scholar 

  30. Racz I, Tory K, Gallyas F Jr, et al (2002) BGP-15 — a novel poly(ADP-ribose) polymerase inhibitor — protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem Pharmacol 63:099–1111

    Article  Google Scholar 

  31. Burkle A, Chen G, Kupper JH, Grube K, Zeller WJ (1993) Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis 14:559–561

    Article  PubMed  CAS  Google Scholar 

  32. Shino Y, Itoh Y, Kubota T, Yano T, Sendo T, Oishi R (2003) Role of poly(ADP-ribose)polymerase in cisplatin-induced injury in LLC-PK1 cells. Free Radic Biol Med 35:966–977

    Article  PubMed  CAS  Google Scholar 

  33. Graziani G, Szabo C (2005) Clinical perspectives of PARP inhibitors. Pharmacol Res 52:109–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media Inc.

About this paper

Cite this paper

Vaschetto, R., Plötz, F.B., Groeneveld, A.B.J. (2008). Role of Poly(ADP-Ribose) Polymerase in Acute Kidney Injury. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77383-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77383-4_52

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77382-7

  • Online ISBN: 978-0-387-77383-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics