Cardiac Dysfunction in Septic Shock

  • I. Cinel
  • R. Nanda
  • R. P. Dellinger
Conference paper


Clinically, we observe septic shock as increased capillary permeability, hypovolemia, decreased cardiac output, tachycardia, and hypotension. Sepsis-related systolic and diastolic dysfunction are often characterized by depressed ejection fraction, decreased contractility, and impaired relaxation. Mechanisms of cardiac dysfunction require understanding in order to better attack the clinical challenges of treating septic shock. The inflammatory cascade, autonomic dysregulation, adrenergic receptor downregulation, abnormal myocardial calcium utilization, biochemical uncoupling of mitochondrial energy production, and apoptosis have been implicated in sepsis-related cardiovascular dysfunction. The cellular and biochemical relationships that mitigate the pathophysiology of systolic and diastolic dysfunction in sepsis will be discussed in this chapter.


Septic Shock Diastolic Dysfunction Myocardial Dysfunction Septic Shock Patient Diastolic Heart Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cinel I, Dellinger RP (2007) Advances in pathogenesis and management of sepsis. Curr Opin in Infect Dis 20: 345–352CrossRefGoogle Scholar
  2. 2.
    Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31: 946–955PubMedCrossRefGoogle Scholar
  3. 3.
    Frantz S, Kobzik L, Kim YD, et al (1999) Toll 4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104: 271–280PubMedCrossRefGoogle Scholar
  4. 4.
    Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183: 1617–1624PubMedCrossRefGoogle Scholar
  5. 5.
    Knuefermann P, Nemoto S, Misra A, et al (2002) CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. Circulation 106: 2608–2615PubMedCrossRefGoogle Scholar
  6. 6.
    Baumgarten G, Knuefermann P, Schuhmacher G, et al (2006) Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 25: 43–49PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu X, Bagchi A, Zhao H, et al (2007) Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction. Crit Care Med 35: 886–892PubMedCrossRefGoogle Scholar
  8. 8.
    Brown MA, Jones WK (2004) NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 9: 1201–1217PubMedCrossRefGoogle Scholar
  9. 9.
    Kim SC, Ghanem A, Stapel H, et al (2007) Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol 7: 5PubMedCrossRefGoogle Scholar
  10. 10.
    Van der Poll T, Romijn JA, Endert E, Borm JJ, Buller HR, Sauerwein HP (1991) Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 261: E457–465PubMedGoogle Scholar
  11. 11.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76: 1539–1553PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar A, Kumar A, Paladugu B, Mensing J, Parrillo JE (2007) Transforming growth factorbeta1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-alpha, interleukin-1beta, and human septic shock serum. Crit Care Med 35: 358–364PubMedCrossRefGoogle Scholar
  13. 13.
    Joulin O, Petillot P, Labalette M, Lancel S, Neviere R (2007) Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res 56: 291–297PubMedGoogle Scholar
  14. 14.
    Chopra M, Sharma AC (2007) Distinct cardiodynamic and molecular characteristics during early and late stages of sepsis-induced myocardial dysfunction. Life Sci 81: 306–316PubMedCrossRefGoogle Scholar
  15. 15.
    Schluter KD, Weber M, Schraven E, Piper HM (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267: H1461–1466PubMedGoogle Scholar
  16. 16.
    Hataishi R, Rodrigues AC, Neilan TG, et al (2006) Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 291: H379–384PubMedCrossRefGoogle Scholar
  17. 17.
    Xie YW, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82: 891–897PubMedGoogle Scholar
  18. 18.
    Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53: 165–174PubMedCrossRefGoogle Scholar
  19. 19.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644PubMedGoogle Scholar
  20. 20.
    Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541PubMedGoogle Scholar
  21. 21.
    Barth E, Albuszies G, Baumgart K, et al (2007) Glucose metabolism and catecholamines. Crit Care Med 35(suppl 9): S508–518PubMedCrossRefGoogle Scholar
  22. 22.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223PubMedCrossRefGoogle Scholar
  23. 23.
    Suliman HB, Welty-Wolf KE, Carraway MS, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64: 279–288PubMedCrossRefGoogle Scholar
  24. 24.
    Soriano FG, Nogueira AC, Caldini EG, et al (2006) Potential role of poly (adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Crit Care Med 34: 1073–1079PubMedCrossRefGoogle Scholar
  25. 25.
    Larche J, Lancel S, Hassoun SM, et al (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48: 377–385PubMedCrossRefGoogle Scholar
  26. 26.
    Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome c oxidase in sepsis. Shock 21: 110–114PubMedCrossRefGoogle Scholar
  27. 27.
    Piel DA, Gruber PJ, Weinheimer CJ, et al (2007) Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med 35: 2120–2127PubMedCrossRefGoogle Scholar
  28. 28.
    Hotchkiss RS, Tinsley KW, Swanson PE, et al (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 96: 14541–14546PubMedCrossRefGoogle Scholar
  29. 29.
    Cinel I, Buyukafsar K, Cinel L, et al (2002) The role of poly (ADP-ribose) synthetase inhibition in preventing endotoxemia-induced intestinal epithelial apoptosis. Pharmacol Res 46: 119–127PubMedCrossRefGoogle Scholar
  30. 30.
    Neviere R, Fauvel H, Chopin C, et al (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 163: 218–225PubMedGoogle Scholar
  31. 31.
    Lancel S, Petillot P, Favory R, et al (2005) Expression of apoptosis regulatory factors during myocardial dysfunction in endotoxemic rats. Crit Care Med 33: 492–496PubMedCrossRefGoogle Scholar
  32. 32.
    Carlson DL, Willis MS, White DJ, Horton JW, Giroir BP (2005) Tumor necrosis factor-alphainduced caspase activation mediates endotoxin-related cardiac dysfunction. Crit Care Med 33: 1021–1028PubMedCrossRefGoogle Scholar
  33. 33.
    Lancel S, Joulin O, Favory R, et al (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111: 2596–2604PubMedCrossRefGoogle Scholar
  34. 34.
    Ren J, Ren BH, Sharma AC (2004) Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18: 285–288CrossRefGoogle Scholar
  35. 35.
    Dong LW, Wu LL, Ji Y, Liu MS (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 16: 33–39PubMedCrossRefGoogle Scholar
  36. 36.
    Zhong J, Hwang T-C, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol Heart Circ Physiol 273: 2312–2324Google Scholar
  37. 37.
    Parrillo JE, Parker MM, Natanson C, et al (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113: 227–242PubMedGoogle Scholar
  38. 38.
    Fernandes Junior CJ, Iervolino M, Neves RA, Sampaio EL, Knobel E (1994) Interstitial myocarditis in sepsis. Am J Cardiol 74: 958–962CrossRefGoogle Scholar
  39. 39.
    Rackow EC, Kaufman BS, Falk JL, Astiz ME, Weil MH (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22: 11–22PubMedGoogle Scholar
  40. 40.
    Parker MM, Shelhamer JH, Natanson C, Ailing DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15: 923–929PubMedCrossRefGoogle Scholar
  41. 41.
    Boldt J, Suttner SW (2006) Physiology and pathophysiology of the natriuretic peptide system. In: Vincent JL (ed) Yearbook of Intensive Care and Medicine, Springer-Verlag, Heidelberg, pp 101–109CrossRefGoogle Scholar
  42. 42.
    Maeder M, Fehr T, Rickli H, Ammann P (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129: 1349–1366PubMedCrossRefGoogle Scholar
  43. 43.
    McLean AS, Huang SJ, Hyams S, et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35: 1019–1026PubMedCrossRefGoogle Scholar
  44. 44.
    Ammann P, Maggiorini M, Bertel O, et al (2003) Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol 41: 2004–2009PubMedCrossRefGoogle Scholar
  45. 45.
    Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A (2007) Diastolic heart failure in anaesthesia and critical care. Br J Anaesth 98: 707–721PubMedCrossRefGoogle Scholar
  46. 46.
    Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32: 799–807PubMedCrossRefGoogle Scholar
  47. 47.
    Aurigemma GP, Gaasch WH (2004) Clinical practice. Diastolic heart failure. N Engl J Med 351: 1097–1105PubMedCrossRefGoogle Scholar
  48. 48.
    Pennock GD, Yun DD, Agarwal PG, Spooner PH, Goldman S (1997) Echocardiographic changes after myocardial infarction in a model of left ventricular diastolic dysfunction. Am J Physiol 273: H2018–2029PubMedGoogle Scholar
  49. 49.
    De Hert SG, Gillebert TC, Ten Broecke PW, Mertens E, Rodrigus IE, Moulijn AC (1999) Contraction-relaxation coupling and impaired left ventricular performance in coronary surgery patients. Anesthesiology 90: 748–757PubMedCrossRefGoogle Scholar
  50. 50.
    Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38: 472–479PubMedCrossRefGoogle Scholar
  51. 51.
    Rabuel C, Renaud E, Brealey D, et al (2004) Human septic myopathy: induction of cyclooxygenase, heme oxygenase and activation of the ubiquitin proteolytic pathway. Anesthesiology 101: 583–590PubMedCrossRefGoogle Scholar
  52. 52.
    Levy B, Dusang B, Annane D, Gibot S, Bollaert PE (2005) Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study. Crit Care Med 33: 2172–2177PubMedCrossRefGoogle Scholar
  53. 53.
    Silverman HJ, Penaranda R, Orens JB, Lee NH (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21: 31–39PubMedCrossRefGoogle Scholar
  54. 54.
    Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome c oxidase in sepsis. Shock 21: 110–114PubMedCrossRefGoogle Scholar
  55. 55.
    Budinger GR, Duranteau J, Chandel NS, Schumacker PT (1998) Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem 273: 3320–3326PubMedCrossRefGoogle Scholar
  56. 56.
    Levy RJ, Piel DA, Acton PD, et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33: 2752–2756PubMedCrossRefGoogle Scholar
  57. 57.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150PubMedCrossRefGoogle Scholar
  58. 58.
    Levy B (2006) Lactate and shock states; the metabolic view. Curr Opin Crit Care Med 12: 315–321CrossRefGoogle Scholar
  59. 59.
    Revelly JP, Tappy L, Martinez A, et al (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33: 2235–2240PubMedCrossRefGoogle Scholar
  60. 60.
    Levy B, Mansart A, Montemont C, et al (2007) Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med 33: 495–502PubMedCrossRefGoogle Scholar
  61. 61.
    Myburgh JA (2006) An appraisal of selection and use of catecholamines in septic shock — old becomes new again. Critical Care and Resuscitation 8: 353–360PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • I. Cinel
    • 1
  • R. Nanda
    • 1
  • R. P. Dellinger
    • 1
  1. 1.Division of Critical Care CooperUniversity Hospital One Cooper PlazaCamdenUSA

Personalised recommendations