Advertisement

Glutathione in Sepsis and Multiple Organ Failure

  • U. Fläring
  • J. Wernerman
Conference paper

Abstract

Glutathione, a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine) with antioxidant properties, is present at high concentrations (mmol) in most tissues in man. Its major functions are to scavenge toxic reactive oxidant species (ROS), to detoxify exogenous toxic compounds, including drugs, and to regulate protein metabolism. The ubiquitous cytoprotective effects of glutathione are well established [1]. In skeletal muscle from intensive care unit (ICU) patients, low glutathione concentrations are seen, which correlates with glutamine depletion [2] and with mortality [3]. The consequences of glutathione deplertion are not fully understood. In this chapter, new insights into the glutathione status of ICU patients are presented including the temporal pattern [4, 5], the effect of exogenous glutamine supplementation [6], and the relation between glutathione status in different tissues [7].

Keywords

Intensive Care Unit Patient Reactive Oxidant Species Glutathione Depletion Glutathione Concentration Glutamine Supplementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; Applications in research and therapy. Pharmacol Ther 51:155–194PubMedCrossRefGoogle Scholar
  2. 2.
    Hammarqvist F, Luo JL, Andersson K, Wernerman J (1997) Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 25:78–84PubMedCrossRefGoogle Scholar
  3. 3.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedCrossRefGoogle Scholar
  4. 4.
    Flaring UB, Rooyackers OE, Hebert C, Bratel T, Hammarqvist F, Wernerman J (2005) Temporal changes in whole-blood and plasma glutathione in ICU patients with multiple organ failure. Intensive Care Med 31:1072–1078PubMedCrossRefGoogle Scholar
  5. 5.
    Flaring UB, Rooyackers OB, Wernerman J, Hammarqvist F (2003) Temporal changes in muscle glutathione in ICU patients. Intensive Care Med 29:2193–2198PubMedCrossRefGoogle Scholar
  6. 6.
    Flaring UB, Rooyackers OE, Hammarqvist F, Wernerman J (2003) Glutamine attenuates posttraumatic glutathione depletion in human muscle. Clin Sci 104:275–282PubMedCrossRefGoogle Scholar
  7. 7.
    Flaring UB, Rooyackers OE, Hammarqvist F, Wernerman J (2006) Glutathione metabolism in human endotoxemia. Intensive Care Med 32(suppl 1):S284 (Abst)Google Scholar
  8. 8.
    Kaplowitz MON (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)-ine. Semin Liver Dis 18:313–329PubMedCrossRefGoogle Scholar
  9. 9.
    Gamrin L, Essén P, Hultman E, Wernerman J (1996) A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy rich phosphates, protein, nucleic acids, fat, water and electrolytes. Crit Care Med 24:575–583PubMedCrossRefGoogle Scholar
  10. 10.
    Vesali RF, Klaude M, Rooyackers OE, Tjäder I, Barle H, Wernerman J (2002) Longitudinal pattern of glutamine/glutamate balance across the leg in long-stay intensive care unit patients. Clin Nutr 21:505–514PubMedCrossRefGoogle Scholar
  11. 11.
    Lacey JM, Wilmore DW (1990) Is glutamine a conditionally essential amino acid? Nutr Rew 48:297–309CrossRefGoogle Scholar
  12. 12.
    Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: A systematic review of the evidence. Crit Care Med 30:2022–2029PubMedCrossRefGoogle Scholar
  14. 14.
    Huodijk A, Riijnsburger E, Jansen J, et al (1998) Randomised trial of glutamine enriched enterai nutrition on infectious morbidity in patients with multiple trauma. Lancet 352:772–776CrossRefGoogle Scholar
  15. 15.
    Griffiths RD, Jones C, Palmer A (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 13:295–302PubMedGoogle Scholar
  16. 16.
    Ziegler TR, Young LS, Benfell K, et al (1992) Clinical and metabolic efficacy of glutaminesupplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med 116:821–828PubMedGoogle Scholar
  17. 17.
    Wernerman J (1998) Glutamine-containing TPN: a question of life and death for intensive care unit-patients? Clin Nutr 17:3–6PubMedCrossRefGoogle Scholar
  18. 18.
    Hong RW, Helton WS, Rounds JD, Wilmore DW (1990) Glutamine-supplemented TPN preserves hepatic glutathione and improves survival following chemotherapy. Surg Forum 41:9–11Google Scholar
  19. 19.
    Hong RW, Rounds JD, Helton WS, Robinson MK, Wilmore DW (1992) Glutamine preserves liver glutathione after lethal hepatic injury. Ann Surg 215:114–119PubMedCrossRefGoogle Scholar
  20. 20.
    Reid M, Badaloo A, Forrester T, et al (2000) In vivo rates of erythrocyte glutathione synthesis in children with severe protein-energy malnutrition. Am J Physiol 278:E405–E412Google Scholar
  21. 21.
    Jahoor F, Jackson A, Gazzard B, et al (1999) Erythrocyte glutathione deficiency in symptomfree HIV infection is associated with decreased synthesis rate. Am J Physiol 276:E205–211PubMedGoogle Scholar
  22. 22.
    Reeds P, Jahoor F (2000) Methods for measuring glutathione concentration and rate of synthesis. Curr Opin Clin Nutr Metab Care 3:385–390CrossRefGoogle Scholar
  23. 23.
    Luo J-L, Hammarqvist F, Andersson K, Wernerman J (1996) Skeletal muscle glutathione after surgical trauma. Ann Surg 223:420–427PubMedCrossRefGoogle Scholar
  24. 24.
    Hammarquist F, Andersson K, Lou J, Wernerman J (2005) Free amino acid and glutathione concentrations in muscle during short-term starvation and refeeding. Clin Nutr 24:236–243CrossRefGoogle Scholar
  25. 25.
    Corbucci GG, Gasparetto A, Candiani A, et al (1985) Shock-induced damage to mitochondrial function and some cellular antioxidant mechanisms in humans. Circ Shock 15:15–26PubMedGoogle Scholar
  26. 26.
    Jahoor F, Wykes LJ, Reeds PJ, Henry JF, del Rosario MP, Frazer ME (1995) Protein-deficient pigs cannot maintain reduced glutathione homeostasis when subjected to the stress of inflammation. J Nutr 125:1462–1472PubMedGoogle Scholar
  27. 27.
    Malmezat T BD, Capitan P (2000) Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr 130:1239–1246PubMedGoogle Scholar
  28. 28.
    Faber P, Johnstone AM, Gibney ER, et al (2002) The effect of rate of weight loss on erythrocyte glutathione concentration and synthesis in healthy obese men. Clin Sci (Lond) 102: 569–577CrossRefGoogle Scholar
  29. 29.
    Lyons J, Rauh-Pfeiffer A, Yu YM, et al (2000) Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc Natl Acad Sci USA 97:5071–5076PubMedCrossRefGoogle Scholar
  30. 30.
    Lyons J, Rauh-Pfeiffer A, Ming-Yu Y, et al (2001) Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med 29:870–877PubMedCrossRefGoogle Scholar
  31. 31.
    Yu YM, Ryan CM, Fei ZW, et al (2002) Plasma L-5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans. Am J Physiol Endocrinol Metab 282:E247–258PubMedGoogle Scholar
  32. 32.
    Richards RS, Roberts TK, Dunstan RH, McGregor NR, Butt HL (1998) Erythrocyte antioxidant systems protect cultured endothelial cells against oxidant damage. Biochem Mol Biol Int 46:857–865PubMedGoogle Scholar
  33. 33.
    Vesali RF, Klaude M, Rooyackers O, Wernerman J (2005) Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab 288:E360–364PubMedCrossRefGoogle Scholar
  34. 34.
    Beutler E (1989) Nutritional and metabolic aspects of glutathione. Annu Rev Nutr 9:287–302PubMedCrossRefGoogle Scholar
  35. 35.
    Reed D, Fariss M (1984) Glutathione depletion and susceptibility. Pharmacol Rev 36:25S–33SPubMedGoogle Scholar
  36. 36.
    White A, Thannickal V, Fanburg BL (1994) Glutathione deficiency in human disease. J Nutr Biochem 5:218–225CrossRefGoogle Scholar
  37. 37.
    Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radie Biol Med 33:1173–1185CrossRefGoogle Scholar
  38. 38.
    Tjader I, Rooyackers O, Forsberg AM, Vesali RF, Garlick PJ, Wernerman J (2004) Effects on skeletal muscle of intravenous glutamine supplementation to ICU patients. Intensive Care Med 30:266–275PubMedCrossRefGoogle Scholar
  39. 39.
    Wilmore DW, Shabert JK (1998) Role of glutamine in immunologie response. Nutrition 14: 618–626PubMedCrossRefGoogle Scholar
  40. 40.
    Van der Hulst RVMM, Van Kreel B, Brummer R, Soeters P (1993) Glutamine and the preservation of gut integrety. Lancet 341:1363–1365PubMedCrossRefGoogle Scholar
  41. 41.
    Tremel H, Kienle B, Weilemann LS, Stehle P, Furst P (1994) Glutamine dipeptide-supplemented parenteral nutrition maintains intestinal function in the critically ill. Gastroenterology 107:1595–1601PubMedGoogle Scholar
  42. 42.
    Ziegler TR, Evans M, Fernandez-Estivariz C, Jones D (2003) Trophic and cytoprotective nutrition for intestinal adaption, mucosal repair, and barrier function. Annu Rev Nutr 23:229–261PubMedCrossRefGoogle Scholar
  43. 43.
    Dechelotte P, Hasselmann M, Cynober L, et al (2006) L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 34:598–604PubMedCrossRefGoogle Scholar
  44. 44.
    Boveris A, Alvarez S, Navarro A (2002) The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radie Biol Med 33:1186–1193CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • U. Fläring
    • 1
  • J. Wernerman
    • 2
  1. 1.Department of Anesthesia and Intensive CareAstrid Lindgren’s Children Hospital Karolinska University HospitalHuddingeSweden
  2. 2.Department of Anesthesia and Intensive CareKarolinska University HospitalHuddingeSweden

Personalised recommendations