Skip to main content

Airway Pressure Release Ventilation: Promises and Potentials for Concern

  • Conference paper
Intensive Care Medicine

Abstract

Mechanical ventilation is one of the most common interventions used in the intensive care unit (ICU); it is a life-saving procedure and a cornerstone in supporting a wide variety of patients from those going through elective surgery procedures to patients with life-threatening processes such as severe sepsis or acute respiratory distress syndrome (ARDS) [1]. Initially conceived as supportive treatment for patients with complications of poliomyelitis but without parenchymal lung disease, positive-pressure mechanical ventilation has evolved over the years due to our expanding knowledge of respiratory physiology, and to advances in ventilator design which allow faster responses to the requirements of each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation. A 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  2. Haitsma JJ (2007) Physiology of mechanical ventilation. Crit Care Clin 23:117–134

    Article  PubMed  Google Scholar 

  3. Pinhu L, Whitehead T, Evans T, Griffiths M (2003) Ventilator-associated lung injury. Lancet 361:332–340

    Article  PubMed  Google Scholar 

  4. Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33

    Article  PubMed  Google Scholar 

  5. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565

    PubMed  CAS  Google Scholar 

  6. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  7. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  8. Katzenstein AL, Bloor CM, Leibow AA (1976) Diffuse alveolar damage — the role of oxygen, shock, and related factors. A review. Am J Pathol 85:209–228

    PubMed  CAS  Google Scholar 

  9. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  10. Weg JG, Anzueto A, Balk RA, et al (1998) The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 338:341–346

    Article  PubMed  CAS  Google Scholar 

  11. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    Article  PubMed  CAS  Google Scholar 

  12. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    Article  PubMed  CAS  Google Scholar 

  13. Tremblay LN, Slutsky AS (1998) Ventilation-induced lung injury: from barotrauma to biotrauma. Proc Assoc Am Phys 110:482–488

    PubMed  CAS  Google Scholar 

  14. Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O (2007) What tidal volumes should be used in patients without acute lung injury? Anesthesiology 106:1226–1231

    Article  PubMed  Google Scholar 

  15. Frank J, Matthay M (2003) Science review: Mechanisms of ventilator-induced injury. Crit Care 7:233–241

    Article  PubMed  Google Scholar 

  16. Held HD, Boettcher S, Hamann L, Uhlig S (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappaB and is blocked by steroids. Am J Respir Crit Care Med 163:711–716

    PubMed  CAS  Google Scholar 

  17. Nieman G (2006) Can ventilator mode reduce ventilator-induced lung injury? Crit Care Med 34:565–566

    Article  PubMed  Google Scholar 

  18. Marini J, Hotchkiss J, Broccard A (2003) Bench-to-bedside review: Microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444

    Article  PubMed  Google Scholar 

  19. Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    Article  PubMed  Google Scholar 

  20. Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784

    Article  PubMed  Google Scholar 

  21. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  22. Borges JB, Okamoto VN, Matos GFJ, et al (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278

    Article  PubMed  Google Scholar 

  23. Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  24. Rubenfeld GD, Caldwell E, Peabody E, et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  PubMed  CAS  Google Scholar 

  25. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349

    Article  PubMed  CAS  Google Scholar 

  26. Vincent JL, Zambon M (2006) Why do patients who have acute lung injury/acute respiratory distress syndrome die from multiple organ dysfunction syndrome? Implications for management. Clin Chest Med 27:725–731

    Article  PubMed  Google Scholar 

  27. Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  28. Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    Article  PubMed  Google Scholar 

  29. The National Heart Lung and Blood Institute ARDS Clinical Trials Network (2004) Mechanical ventilation with higher versus lower positive end-expiratory pressures in patients with acute lung injury and the acute respiratory distress syndrome. N Engl J Med 351:327–336

    Article  Google Scholar 

  30. Stock MC, Downs JB, Frolicher DA, Stock MC, Downs JB, Frolicher DA (1987) Airway pressure release ventilation. Crit Care Med 15:462–466

    Article  PubMed  CAS  Google Scholar 

  31. Habashi NMM (2005) Other approaches to open-lung ventilation: Airway pressure release ventilation. Crit Care Med 33(suppl 3):S228–240

    Article  PubMed  Google Scholar 

  32. Rose L (2006) Advanced modes of mechanical ventilation: Implications for practice. AACN Adv Crit Care 17:145–158

    PubMed  Google Scholar 

  33. Putensen C, Muders T, Varelmann D, Wrigge H (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18

    Article  PubMed  Google Scholar 

  34. Putensen C, Zech S, Wrigge H, et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49

    PubMed  CAS  Google Scholar 

  35. Putensen C, Wrigge H (2004) Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care 8:492–497

    Article  PubMed  Google Scholar 

  36. Varpula T (2004) Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand 48:722–731

    Article  PubMed  CAS  Google Scholar 

  37. Varpula T, Jousela I, Niemi R, Takkunen O, Pettila V (2003) Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand 47:516–524

    Article  PubMed  CAS  Google Scholar 

  38. Fan E, Mullaly A, Ko M, et al (2007) Airway pressure release ventilation in acute lung injury/ acute respiratory distress syndrome patients. Crit Care 11:180

    Article  Google Scholar 

  39. Kaplan LJ, Bailey H, Formosa V (2001) Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care 5:221–226

    Article  PubMed  CAS  Google Scholar 

  40. Neumann P, Hedenstierna G (2001) Ventilatory support by continuous positive airway pressure breathing improves gas exchange as compared with partial ventilatory support with airway pressure release ventilation. Anesth Analg 92:950–958

    Article  PubMed  CAS  Google Scholar 

  41. Frawley PM (2001) Airway pressure release ventilation: theory and practice. AACN Clin Issues 12:234–246

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media Inc.

About this paper

Cite this paper

Gutiérrez Mejía, J., Fan, E., Ferguson, N.D. (2008). Airway Pressure Release Ventilation: Promises and Potentials for Concern. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77383-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77383-4_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77382-7

  • Online ISBN: 978-0-387-77383-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics