The Cardiopulmonary Effects of Hypercapnia

  • T. Manca
  • L. C. Welch
  • J. I. Sznajder
Conference paper


Carbon dioxide (CO2) is a product of oxidative metabolism in humans. The arterial CO2 partial pressure (PO2) can be represented by equation (1):
$$ PO_2 = K \cdot \left( {VCO_2 /V_A } \right) + PiCO_2 $$
where K is a proportion constant, VCO2 the CO2 production, VA the alveolar ventilation, and PCO2 is the inhaled CO2. Aveolar ventilation (VA) is a component of the total ventilation (VT) minus the dead space ventilation (VD), which is VA = VT - VD or:
$$ V_A = V_T \left( {1 - V_D /V_T } \right) $$
therefore, by combining equations 1 and 2, the following equation results:
$$ PCO_2 = K \cdot VCO_2 /V_T \left( {1 - V_D /V_T } \right) + PiCO_2 $$
Consistent with this equation, we can identify four causes for hypercapnia: A) increased CO2 production (VCO2); B) hypoventilation (increased value of 1/VT); C) increased dead space ventilation (VD); and D) increased inhaled CO2 (PiCO2) [1].


Acute Lung Injury Obstructive Sleep Apnea Syndrome Respir Crit Hypercapnic Acidosis Alveolar Fluid Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantzker DR (1991) Pulmonary gas exchange. In: Dantzker DR (ed) Cardiopulmonary Gas Exchange, 2nd edn. WB Saunders, Philadelphia, pp 25–43Google Scholar
  2. 2.
    Gutierrez G (2004) A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med 169:525–533PubMedCrossRefGoogle Scholar
  3. 3.
    Talpers SS, Romberger DJ, Bunce SB, Pingleton SK (1992) Nutritionally associated increased carbon dioxide production. Excess total calories vs high proportion of carbohydrate calories. Chest 102:551–555PubMedCrossRefGoogle Scholar
  4. 4.
    Christiansen J, Douglas CG, Haidane JS (1914) The absorption and dissociation of carbon dioxide by human blood. J Physiol 48:244–271PubMedGoogle Scholar
  5. 5.
    Chen J, Lecuona E, Briva A, Welch LC, Sznajder JI (2008) Carbonic anhydrase II and alveolar Fluid Reabsorption During Hypercapnia. Am J Respir Cell Mol Biol 38:32–37PubMedCrossRefGoogle Scholar
  6. 6.
    Nishio K, Suzuki Y, Takeshita K, et al (2001) Effects of hypercapnia and hypocapnia on [Ca2+]i mobilization in human pulmonary artery endothelial cells. J Appl Physiol 90:2094–2100PubMedGoogle Scholar
  7. 7.
    Zhu S, Basiouny KF, Crow JP, Matalon S (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 278:L1025–1031PubMedGoogle Scholar
  8. 8.
    Eiserich JP, Estevez AG, Bamberg TV, et al (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96:6365–6370PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3-and solute reabsorption are acutely regulated not by pH but by basolateral HCO3-and CO2. Proc Natl Acad Sci USA 102:3875–3880PubMedCrossRefGoogle Scholar
  10. 10.
    Lavani R, Chang WT, Anderson T, et al (2007) Altering CO2 during reperfusion of ischemie cardiomyocytes modifies mitochondrial oxidant injury. Crit Care Med 35:1709–1716PubMedCrossRefGoogle Scholar
  11. 11.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  12. 12.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  13. 13.
    Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P (2004) Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med 169: 46–56PubMedCrossRefGoogle Scholar
  14. 14.
    Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408PubMedCrossRefGoogle Scholar
  15. 15.
    Berlett BS, Levine RL, Stadtman ER (1998) Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc Natl Acad Sci USA 95:2784–2789PubMedCrossRefGoogle Scholar
  16. 16.
    Gow A, Duran D, Thorn SR, Ischiropoulos H (1996) Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys 333:42–48PubMedCrossRefGoogle Scholar
  17. 17.
    Radi R, Denicola A, Freeman BA (1999) Peroxynitrite reactions with carbon dioxide-bicarbonate. Methods Enzymol 301:353–367PubMedCrossRefGoogle Scholar
  18. 18.
    Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654PubMedCrossRefGoogle Scholar
  19. 19.
    Doerr CH, Gajic O, Berrios JC, et al (2005) Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 171:1371–1377PubMedCrossRefGoogle Scholar
  20. 20.
    van den Elshout FJ, van Herwaarden CL, Folgering HT (1991) Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 46:28–32PubMedCrossRefGoogle Scholar
  21. 21.
    Ooi H, Cadogan E, Sweeney M, Howell K, O’Regan RG, McLoughlin P (2000) Chronic hypercapnia inhibits hypoxic pulmonary vascular remodeling. Am J Physiol Heart Circ Physiol 278:H331–338PubMedGoogle Scholar
  22. 22.
    Balanos GM, Talbot NP, Dorrington KL, Robbins PA (2003) Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol 94:1543–1551PubMedGoogle Scholar
  23. 23.
    Matthay MA, Folkesson HG, Clerici C (2002) Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 82:569–600PubMedGoogle Scholar
  24. 24.
    Mutlu GM, Sznajder JI (2005) Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol 289:L685–695PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson MD, Widdicombe JH, Allen L, Barbry P, Dobbs LG (2002) Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci USA 99:1966–1971PubMedCrossRefGoogle Scholar
  26. 26.
    Ridge KM, Olivera WG, Saldias F, et al (2003) Alveolar type 1 cells express the alpha2 Na, K-ATPase, which contributes to lung liquid clearance. Circ Res 92:453–460PubMedCrossRefGoogle Scholar
  27. 27.
    Skou JC (1998) Nobel Lecture. The identification of the sodium pump. Biosci Rep 18:155–169PubMedCrossRefGoogle Scholar
  28. 28.
    Dada LA, Sznajder JI (2003) Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: role of the Na, K-ATPase. Crit Care Med 31:S248–252PubMedCrossRefGoogle Scholar
  29. 29.
    Olivera WG, Ridge KM, Sznajder JI (1995) Lung liquid clearance and Na, K-ATPase during acute hyperoxia and recovery in rats. Am J Respir Crit Care Med 152:1229–1234PubMedGoogle Scholar
  30. 30.
    Orchard CH, Hamilton DL, Astles P, McCall E, Jewell BR (1991) The effect of acidosis on the relationship between Ca2+ and force in isolated ferret cardiac muscle. J Physiol 436:559–578PubMedGoogle Scholar
  31. 31.
    Urboniene D, Dias FA, Pena JR, Walker LA, Solaro RJ, Wolska BM (2005) Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during respiratory hypercapnia. Circ Res 97:70–77PubMedCrossRefGoogle Scholar
  32. 32.
    Hulme JT, Orchard CH (1998) Effect of acidosis on Ca2+ uptake and release by sarcoplasmic reticulum of intact rat ventricular myocytes. Am J Physiol 275:H977–987PubMedGoogle Scholar
  33. 33.
    Salas MA, Vila-Petroff MG, Venosa RA, Mattiazzi A (2006) Contractile recovery from acidosis in toad ventricle is independent of intracellular pH and relies upon Ca2+ influx. J Exp Biol 209:916–926PubMedCrossRefGoogle Scholar
  34. 34.
    Bond JM, Chacon E, Herman B, Lemasters JJ (1993) Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol 265:C129–137PubMedGoogle Scholar
  35. 35.
    Sakuma T, Takahashi K, Ohya N, et al (1999) Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection. Am J Physiol 276:L137–145PubMedGoogle Scholar
  36. 36.
    Hurtado C, Pierce GN (2000) Inhibition of Na(+)/H(+) exchange at the beginning of reperfusion is cardioprotective in isolated, beating adult cardiomyocytes. J Mol Cell Cardiol 32: 1897–1907PubMedCrossRefGoogle Scholar
  37. 37.
    Ishizaka H, Gudi SR, Frangos JA, Kuo L (1999) Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. Circulation 99:558–563PubMedGoogle Scholar
  38. 38.
    Tzou WS, Korcarz CE, Aeschlimann SE, Morgan BJ, Skatrud JB, Stein JH (2007) Coronary flow velocity changes in response to hypercapnia: assessment by transthoracic Doppler echocardiography. J Am Soc Echocardiogr 20:421–426PubMedCrossRefGoogle Scholar
  39. 39.
    McNicholas WT, Bonsigore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29:156–178PubMedCrossRefGoogle Scholar
  40. 40.
    Sin DD, Man SF (2005) Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc 2:8–11PubMedCrossRefGoogle Scholar
  41. 41.
    Boussuges A, Pinet C, Molenat F, et al (2000) Left atrial and ventricular filling in chronic obstructive pulmonary disease. An echocardiographic and Doppler study. Am J Respir Crit Care Med 162:670–675PubMedGoogle Scholar
  42. 42.
    Kiely DG, Cargill RI, Lipworth BJ (1996) Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 109:1215–1221PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper VL, Pearson SB, Bowker CM, Elliott MW, Hainsworth R (2005) Interaction of chemo-receptor and baroreceptor reflexes by hypoxia and hypercapnia — a mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol 568:677–687PubMedCrossRefGoogle Scholar
  44. 44.
    Shiota S, Okada T, Naitoh H, Ochi R, Fukuchi Y (2004) Hypoxia and hypercapnia affect contractile and histological properties of rat diaphragm and hind limb muscles. Pathophysiology 11:23–30PubMedCrossRefGoogle Scholar
  45. 45.
    Komori M, Takada K, Tomizawa Y, Nishiyama K, Kawamata M, Ozaki M (2007) Permissive range of hypercapnia for improved peripheral microcirculation and cardiac output in rabbits. Crit Care Med 35:2171–2175PubMedCrossRefGoogle Scholar
  46. 46.
    Fortune JB, Feustel PJ, deLuna C, Graca L, Hasselbarth J, Kupinski AM (1995) Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans. J Trauma 39: 463–471PubMedCrossRefGoogle Scholar
  47. 47.
    Iadecola C, Zhang F (1996) Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine. Am J Physiol 271:R990–1001PubMedGoogle Scholar
  48. 48.
    Wang Q, Bryan RM Jr, Pelligrino DA (1998) Calcium-dependent and ATP-sensitive potassium channels and the ‘permissive’ function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation. Brain Res 793:187–196PubMedCrossRefGoogle Scholar
  49. 49.
    Wagerle LC, Mishra OP (1988) Mechanism of CO2 response in cerebral arteries of the new-born pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ Res 62: 1019–1026PubMedGoogle Scholar
  50. 50.
    Helmy A, Vizcaychipi M, Gupta AK (2007) Traumatic brain injury: intensive care management. Br J Anaesth 99:32–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • T. Manca
    • 1
  • L. C. Welch
    • 1
  • J. I. Sznajder
    • 1
  1. 1.Pulmonary and Critical Care Medicine Feinberg School of MedicineNorthwesten UniversityChicagoUSA

Personalised recommendations