Hypercapnia: Permissive, Therapeutic, or Not at All?

  • P. Hassett
  • M. Contreras
  • J. G. Laffey
Conference paper


In the past, hypercapnia and its concomitant hypercapnic acidosis, have been considered to be adverse, and were strictly avoided in the critically ill. Support for this approach derived from concerns regarding the link between hypercapnia and/or acidosis and adverse outcome in diverse clinical contexts, including cardiac arrest, sepsis, and neonatal asphyxia [1]. However, accumulating evidence from experimental and clinical studies demonstrates the potential for mechanical ventilation to directly injure the lungs — a phenomenon termed ‘ventilator-induced lung injury (VILI)’ — and has mandated a rethink of our approaches to hypercapnia.


Lung Injury Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit High Tidal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laffey JG, Kavanagh BP (1999) Carbon dioxide and the critically ill — too little of a good thing? Lancet 354:1283–1286PubMedCrossRefGoogle Scholar
  2. 2.
    Amato MB, Barbas, CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  3. 3.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377PubMedCrossRefGoogle Scholar
  4. 4.
    Swenson ER, Robertson HT, Hlastala MP (1994) Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med 149:1563–1569PubMedGoogle Scholar
  5. 5.
    Wildeboer-Venema F (1980) The influences of temperature and humidity upon the isolated surfactant film of the dog. Respir Physiol 39:63–71PubMedCrossRefGoogle Scholar
  6. 6.
    Hare GM, Kavanagh BP, Mazer CD, et al (2003) Hypercapnia increases cerebral tissue oxygen tension in anesthetized rats. Can J Anaesth 50:1061–1068PubMedCrossRefGoogle Scholar
  7. 7.
    Laffey JG, Jankov RP, Engelberts D, et al (2003) Effects of therapeutic hypercapnia on mesenteric ischemia-reperfusion injury. Am J Respir Crit Care Med 168:1383–1390PubMedCrossRefGoogle Scholar
  8. 8.
    Lee KJ, Hernandez G, Gordon JB (2003) Hypercapnic acidosis and compensated hypercapnia in control and pulmonary hypertensive piglets. Pediatr Pulmonol 36:94–101PubMedCrossRefGoogle Scholar
  9. 9.
    Shiota S, Okada T, Naitoh H, Ochi R, Fukuchi Y (2004) Hypoxia and hypercapnia affect contractile and histological properties of rat diaphragm and hind limb muscles. Pathophysiology 11:23–30PubMedCrossRefGoogle Scholar
  10. 10.
    Cullen DJ, Eger EI 2nd (1974) Cardiovascular effects of carbon dioxide in man. Anesthesiology 41:345–349PubMedCrossRefGoogle Scholar
  11. 11.
    Cardenas VJ, Zwischenberger JB, Tao W, et al (1996) Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 24:827–834PubMedCrossRefGoogle Scholar
  12. 12.
    Hillered L, Ernster L, Siesjo BK (1984) Influence of in vitro lactic acidosis and hypercapnia on respiratory activity of isolated rat brain mitochondria. J Cereb Blood Flow Metab 4:430–437PubMedGoogle Scholar
  13. 13.
    Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh BP (1998) Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158:1578–1584PubMedGoogle Scholar
  14. 14.
    Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161:141–146PubMedGoogle Scholar
  15. 15.
    Laffey JG, Tanaka M, Engelberts D, et al (2000) Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 162: 2287–2294PubMedGoogle Scholar
  16. 16.
    Kantores C, McNamara PJ, Teixeira L, et al (2006) Therapeutic hypercapnia prevents chronic hypoxia-induced pulmonary hypertension in the newborn rat. Am J Physiol Lung Cell Mol Physiol 291: L912–922PubMedCrossRefGoogle Scholar
  17. 17.
    Broccard AF, Hotchkiss JR, Vannay C, et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806PubMedGoogle Scholar
  18. 18.
    Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408PubMedCrossRefGoogle Scholar
  19. 19.
    Strand M, Ikegami M, Jobe AH (2003) Effects of high PCO2 on ventilated preterm lamb lungs. Pediatr Res 53:468–472PubMedCrossRefGoogle Scholar
  20. 20.
    Rai S, Engelberts D, Laffey JG, et al (2004) Therapeutic hypercapnia is not protective in the in vivo surfactant-depleted rabbit lung. Pediatr Res 55:42–99PubMedCrossRefGoogle Scholar
  21. 21.
    Doerr CH, Gajic O, Berrios JC, et al (2005) Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 171:1371–1377PubMedCrossRefGoogle Scholar
  22. 22.
    Nomura F, Aoki M, Forbess JM, Mayer JE Jr (1994) Effects of hypercarbic acidotic reperfusion on recovery of myocardial function after cardioplegic ischemia in neonatal lambs. Circulation 90:II321–327PubMedGoogle Scholar
  23. 23.
    Kitakaze M, Takashima S, Funaya H, et al (1997) Temporary acidosis during reperfusion limits myocardial infarct size in dogs. Am J Physiol 272:H2071–2078PubMedGoogle Scholar
  24. 24.
    von Planta I, Weil MH, von Planta M, Gazmuri RJ, Duggal C (1991) Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med 19:1177–1182CrossRefGoogle Scholar
  25. 25.
    Barth A, Bauer R, Gedrange T, Walter B, Klinger W, Zwiener U (1998) Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets. Exp Toxicol Pathol 50:402–410PubMedGoogle Scholar
  26. 26.
    Vannucci RC, Brucklacher RM, Vannucci SJ (1997) Effect of carbon dioxide on cerebral metabolism during hypoxia-ischemia in the immature rat. Pediatr Res 42:24–29PubMedCrossRefGoogle Scholar
  27. 27.
    Holmes JM, Zhang S, Leske DA, Lanier WL (1998) Carbon dioxide-induced retinopathy in the neonatal rat. Curr Eye Res 17:608–616PubMedCrossRefGoogle Scholar
  28. 28.
    Bonventre JV, Cheung JY (1985) Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol 249:C149–159PubMedGoogle Scholar
  29. 29.
    Coakley RJ, Taggart C, Greene C, McElvaney NG, O’Neill SJ (2002) Ambient pCO2 modulates intracellular pH, intracellular oxidant generation, and interleukin-8 secretion in human neutrophils. J Leukoc Biol 71:603–610PubMedGoogle Scholar
  30. 30.
    Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P (2004) Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med 169: 46–56PubMedCrossRefGoogle Scholar
  31. 31.
    Lang JD Jr, Chumley P, Eiserich JP, et al (2000) Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279: L994–1002PubMedGoogle Scholar
  32. 32.
    Takeshita K, Suzuki Y, Nishio K, et al (2003) Hypercapnic acidosis attenuates endotoxin-induced nuclear factor-[kappa]B activation. Am J Respir Cell Mol Biol 29:124–132PubMedCrossRefGoogle Scholar
  33. 33.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  34. 34.
    Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361PubMedCrossRefGoogle Scholar
  35. 35.
    Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  36. 36.
    Brower RG, Shanholtz CB, Fessier HE, et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27:1492–1498PubMedCrossRefGoogle Scholar
  37. 37.
    Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER (2006) Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 34:1–7PubMedCrossRefGoogle Scholar
  38. 38.
    Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129:385–387PubMedGoogle Scholar
  39. 39.
    Tuxen DV, Williams TJ, Scheinkestel CD, Czarny D, Bowes G (1992) Use of a measurement of pulmonary hyperinflation to control the level of mechanical ventilation in patients with acute severe asthma. Am Rev Respir Dis 146:1136–1142PubMedGoogle Scholar
  40. 40.
    Caramez MP, Borges JB, Tucci MR, et al (2005) Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med 33:1519–1528PubMedCrossRefGoogle Scholar
  41. 41.
    Mariani G, Cifuentes J, Carlo WA (1999) Randomized trial of permissive hypercapnia in preterm infants. Pediatrics 104:1082–1088PubMedCrossRefGoogle Scholar
  42. 42.
    Carlo WA, Stark AR, Wright LL, et al (2002) Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants. J Pediatr 141:370–374PubMedCrossRefGoogle Scholar
  43. 43.
    Wung JT, James LS, Kilchevsky E, James E (1985) Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation. Pediatrics 76:488–494PubMedGoogle Scholar
  44. 44.
    Marron MJ, Crisafi MA, Driscoll JM Jr, et al (1992) Hearing and neurodevelopmental outcome in survivors of persistent pulmonary hypertension of the newborn. Pediatrics 90: 392–396PubMedGoogle Scholar
  45. 45.
    Bagolan P, Casaccia G, Crescenzi F, Nahom A, Trucchi A, Giorlandino C (2004) Impact of a current treatment protocol on outcome of high-risk congenital diaphragmatic hernia. J Pediatr Surg 39:313–318PubMedCrossRefGoogle Scholar
  46. 46.
    Licht DJ, Wang J, Silvestre DW, et al (2004) Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg 128:841–849PubMedCrossRefGoogle Scholar
  47. 47.
    Hoskote A, Li J, Hickey C, et al (2004) The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 44:1501–1509PubMedCrossRefGoogle Scholar
  48. 48.
    Tasker RC, Peters MJ (1998) Combined lung injury, meningitis and cerebral edema: how permissive can hypercapnia be? Intensive Care Med 24:616–619PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • P. Hassett
    • 1
  • M. Contreras
    • 1
  • J. G. Laffey
    • 1
  1. 1.Department of AnesthesiaClinical Sciences Institute National University of IrelandGalwayIreland

Personalised recommendations