Regional Lung Function in Critically III Neonates: A New Perspective for Electrical Impedance Tomography

  • I. Frerichs
  • J. Scholz
  • N. Weiler
Conference paper


Electrical impedance tomography (EIT) is an emerging, radiation-free, medical imaging modality considered to become a bedside monitoring tool of regional lung function in intensive care patients [19]. This method could be used not only in adult but also in neonatal and pediatric patients. The perspective of EIT in the latter patient group is mainly based on: 1) the lack of information on regional lung function at the bedside; and 2) deficits in available diagnostic and monitoring techniques to provide this information. Bedside monitoring of regional lung function is needed because most critically ill neonates require either invasive or non-invasive ventilatory support, their lung tissue is immature and prone to development of irreversible damage and chronic lung disease, pathological processes in the lungs are not uniform, and therapeutic measures (e.g., surfactant or ventilator therapy) may exhibit regionally heterogeneous effects.


Electrical Impedance Tomography Regional Lung Recruitment Maneuver Surfactant Treatment Surfactant Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold JH (2004) Electrical impedance tomography: on the path to the Holy Grail. Crit Care Med 32:894–895PubMedCrossRefGoogle Scholar
  2. 2.
    Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–21PubMedCrossRefGoogle Scholar
  3. 3.
    Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316PubMedCrossRefGoogle Scholar
  4. 4.
    Hedenstierna G (2004) Using electric impedance tomography to assess regional ventilation at the bedside. Am J Respir Crit Care Med 169:777–778PubMedCrossRefGoogle Scholar
  5. 5.
    Hinz J, Hahn G, Neumann P, et al (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43PubMedGoogle Scholar
  6. 6.
    Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28:S247–260PubMedCrossRefGoogle Scholar
  7. 7.
    Odenstedt H, Lindgren S, Olegard C, et al (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714PubMedCrossRefGoogle Scholar
  8. 8.
    Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–169PubMedCrossRefGoogle Scholar
  10. 10.
    Aurora P, Gustafsson P, Bush A, et al (2004) Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 59:1068–1073PubMedCrossRefGoogle Scholar
  11. 11.
    Schibler A, Hall GL, Businger F, et al (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918PubMedCrossRefGoogle Scholar
  12. 12.
    Frerichs I, Hinz J, Herrmann P, et al (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMedGoogle Scholar
  13. 13.
    Hinz J, Neumann P, Dudykevych T, et al (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRefGoogle Scholar
  14. 14.
    Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490Google Scholar
  15. 15.
    Victorino JA, Borges JB, Okamoto VN, et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169: 791–800PubMedCrossRefGoogle Scholar
  16. 16.
    Frerichs I, Schmitz G, Pulletz S, et al (2007) Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation. Physiol Meas 28:S261–267PubMedCrossRefGoogle Scholar
  17. 17.
    Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ, Jackson MJ (2002) Neonatal lungs — can absolute lung resistivity be determined non-invasively? Med Biol Eng Comput 40:388–394PubMedCrossRefGoogle Scholar
  18. 18.
    Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ, Jackson MJ (2002) Neonatal lungs: maturational changes in lung resistivity spectra. Med Biol Eng Comput 40:506–511PubMedCrossRefGoogle Scholar
  19. 19.
    Barber DC (1990) Quantification in impedance imaging. Clin Phys Physiol Meas 11(suppl A):45–56PubMedCrossRefGoogle Scholar
  20. 20.
    Geddes LA, Baker LE (1967) The specific resistance of biological material-a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293PubMedCrossRefGoogle Scholar
  21. 21.
    Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169PubMedCrossRefGoogle Scholar
  22. 22.
    Dunlop S, Hough J, Riedel T, Fraser JF, Dunster K, Schibler A (2006) Electrical impedance tomography in extremely prematurely born infants and during high frequency oscillatory ventilation analyzed in the frequency domain. Physiol Meas 27:1151–1165PubMedCrossRefGoogle Scholar
  23. 23.
    Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G (2001) Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 91:39–50PubMedGoogle Scholar
  24. 24.
    Frerichs I, Hahn G, Hellige G (1999) Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging 18:764–773PubMedCrossRefGoogle Scholar
  25. 25.
    Frerichs I, Hahn G, Schroder T, Hellige G (1998) Electrical impedance tomography in monitoring experimental lung injury. Intensive Care Med 24:829–836PubMedCrossRefGoogle Scholar
  26. 26.
    Hahn G, Sipinkova I, Baisch F, Heilige G (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas 16:A161–173PubMedCrossRefGoogle Scholar
  27. 27.
    Meier T, Luepschen H, Karsten J, et al (2007) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med [Epub ahead of print]Google Scholar
  28. 28.
    Smallwood RH, Hampshire AR, Brown BH, Primhak RA, Marven S, Nopp P (1999) A comparison of neonatal and adult lung impedances derived from EIT images. Physiol Meas 20: 401–413PubMedCrossRefGoogle Scholar
  29. 29.
    Helms P, Hulse MG, Hatch DJ (1982) Lung volume and lung mechanics in infancy lateral or supine posture? Pediatr Res 16:943–947PubMedCrossRefGoogle Scholar
  30. 30.
    Larsson A, Jonmarker C, Lindahl SG, Werner O (1989) Lung function in the supine and lateral decubitus positions in anaesthetized infants and children. Br J Anaesth 62:378–384PubMedCrossRefGoogle Scholar
  31. 31.
    Heaf DP, Helms P, Gordon I, Turner HM (1983) Postural effects on gas exchange in infants. N Engl J Med 308:1505–1508PubMedGoogle Scholar
  32. 32.
    Davies H, Kitchman R, Gordon I, Helms P (1985) Regional ventilation in infancy. Reversal of adult pattern. N Engl J Med 313:1626–1628PubMedGoogle Scholar
  33. 33.
    Frerichs I, Schiffmann H, Oehler R, et al (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRefGoogle Scholar
  34. 34.
    Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: An electrical impedance tomography study. Intensive Care Med 32:1392–1398PubMedCrossRefGoogle Scholar
  35. 35.
    Thach B (2001) Fast breaths, slow breaths, small breaths, big breaths: importance of vagal innervation in the newborn lung. J Appl Physiol 91:2298–2300PubMedGoogle Scholar
  36. 36.
    Frerichs I, Hahn G, Schiffmann H, Berger C, Heilige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci 873:493–505PubMedCrossRefGoogle Scholar
  37. 37.
    Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRefGoogle Scholar
  38. 38.
    Hampshire AR, Smallwood RH, Brown BH, Primhak RA (1995) Multifrequency and parametric EIT images of neonatal lungs. Physiol Meas 16:A175–189PubMedCrossRefGoogle Scholar
  39. 39.
    Taktak A, Spencer A, Record P, Gadd R, Rolfe P (1996) Feasibility of neonatal lung imaging using electrical impedance tomography. Early Human Development 44:131–138PubMedCrossRefGoogle Scholar
  40. 40.
    Frerichs I, Schiffmann H, Hahn G, Dudykevych T, Just A, Hellige G (2005) Funktionelle elektrische Impedanztomographie — eine Methode zur bettsetigen Ueberwachung der regionalen Lungenfunktion. Intensivmed 42:66–73Google Scholar
  41. 41.
    Ainsworth SB, Milligan DW (2002) Surfactant therapy for respiratory distress syndrome in premature neonates: a comparative review. Am J Respir Med 1:417–433PubMedGoogle Scholar
  42. 42.
    Rodriguez RJ (2003) Management of respiratory distress syndrome: an update. Respir Care 48:279–286PubMedGoogle Scholar
  43. 43.
    Suresh GK, Soll RF (2005) Overview of surfactant replacement trials. J Perinatol 25(suppl 2): S40–44PubMedCrossRefGoogle Scholar
  44. 44.
    Couser RJ, Ferrara TB, Wheeler W, et al (1993) Pulmonary follow-up 2.5 years after a randomized, controlled, multiple dose bovine surfactant study of preterm newborn infants. Pediatr Pulmonol 15:163–167PubMedCrossRefGoogle Scholar
  45. 45.
    Mercier CE, Soll RF (1993) Clinical trials of natural surfactant extract in respiratory distress syndrome. Clin Perinatol 20:711–735PubMedGoogle Scholar
  46. 46.
    Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779PubMedCrossRefGoogle Scholar
  47. 47.
    Krause M, Olsson T, Law AB, et al (1997) Effect of volume recruitment on response to surfactant treatment in rabbits with lung injury. Am J Respir Crit Care Med 156:862–866PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • I. Frerichs
    • 1
  • J. Scholz
    • 1
  • N. Weiler
    • 1
  1. 1.Department of Anesthesiology and Intensive Care MedicineUniversity Medical Center of Schleswig-HolsteinKielGermany

Personalised recommendations