Advertisement

Genetic Susceptibility in ALI/ARDS: What have we Learned?

  • R. Cartin-Ceba
  • M. N. Gong
  • O. Gajic
Conference paper

Abstract

Since its initial description in 1967 [1], and subsequent definition in 1992 by the American-European Consensus Conference [2], acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and all the different facets of this devastating illness — etiology, pathophysiology, epidemiology, management, and genetics — have become better understood. Recent reports from the United States document that this syndrome affects 190,000 patients annually with a mortality exceeding 35% [3]. The incidence in European countries and Australia varies significantly, but is generally lower, ranging from 16 to 34 cases per 100,000 person-years at risk [4, 5, 6].

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit Adult Respiratory Distress Syndrome Genetic Epidemiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323PubMedCrossRefGoogle Scholar
  2. 2.
    Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  3. 3.
    Rubenfeld GD, Caldwell E, Peabody E, et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693PubMedCrossRefGoogle Scholar
  4. 4.
    Luhr OR, Antonsen K, Karlsson M, et al (1999) Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. The ARF Study Group. Am J Respir Crit Care Med 159:1849–1861PubMedGoogle Scholar
  5. 5.
    Hughes M, MacKirdy FN, Ross J, Norrie J, Grant IS (2003) Acute respiratory distress syndrome: an audit of incidence and outcome in Scottish intensive care units. Anaesthesia 58:838–845PubMedCrossRefGoogle Scholar
  6. 6.
    Bersten AD, Edibam C, Hunt T, Moran J (2002) Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med 165:443–448PubMedGoogle Scholar
  7. 7.
    Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564PubMedCrossRefGoogle Scholar
  8. 8.
    Villar J, Mendez S, Slutsky AS (2001) Critical care medicine in the 21st century: from CPR to PCR. Crit Care 5: p125–130PubMedCrossRefGoogle Scholar
  9. 9.
    Bersten AD, Hunt T, Nicholas TE, Doyle IR (2001) Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am J Respir Crit Care Med 164:648–652PubMedGoogle Scholar
  10. 10.
    Marks JD, Marks CB, Luce JM, et al (1990) Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration. Am Rev Respir Dis 141:94–97PubMedGoogle Scholar
  11. 11.
    Meduri GU, Headley S, Kohler G, et al (1995) Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107:1062–1073PubMedCrossRefGoogle Scholar
  12. 12.
    Ware LB, Conner ER, Matthay MA (2001) von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit Care Med 29:2325–2331PubMedCrossRefGoogle Scholar
  13. 13.
    Prabhakaran P, Ware LB, White KE, Cross MT, Matthay MA, Olman MA (2003) Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol, 285:L20–28PubMedGoogle Scholar
  14. 14.
    Lander ES, Linton LM, Birren B, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  15. 15.
    The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796CrossRefGoogle Scholar
  16. 16.
    Flores C, Ma SF, Maresso K, Ahmed O, Garcia JG (2006) Genomics of acute lung injury. Semin Respir Crit Care Med 27:389–395PubMedCrossRefGoogle Scholar
  17. 17.
    Gong MN (2006) Genetic epidemiology of acute respiratory distress syndrome: implications for future prevention and treatment. Clin Chest Med 27:705–724PubMedCrossRefGoogle Scholar
  18. 18.
    Wang WY, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118PubMedCrossRefGoogle Scholar
  19. 19.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108PubMedCrossRefGoogle Scholar
  20. 20.
    Gail MH, Pfeiffer RM, Wheeler W, Pee D (2007) Probability of detecting disease-associated single nucleotide polymorphisms in case-control genome-wide association studies. Biostatistics [Epub ahead of print]Google Scholar
  21. 21.
    Nannya Y, Taura K, Kurokawa M, Ogawa S (2007) Evaluation of genome-wide power of genetic association studies based on empirical data from the HapMap Project. Hum Mol Genet 16:3494–3505CrossRefGoogle Scholar
  22. 22.
    Dinu V, Miller PL, Zhao H (2007) Evidence for association between multiple complement pathway genes and AMD. Genet Epidemiol 31:224–237PubMedCrossRefGoogle Scholar
  23. 23.
    Engels EA, Wu X, Gu J, Dong Q, Liu J, Spitz MR (2007) Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 67:6520–6527PubMedCrossRefGoogle Scholar
  24. 24.
    Meyer NJ, Garcia JG (2007) Wading into the genomic pool to unravel acute lung injury genetics. Proc Am Thorac Soc 4:69–76PubMedCrossRefGoogle Scholar
  25. 25.
    Stuber F (2003) Genomics and critical care: do the right thing! Crit Care Med 31:1869–1870PubMedCrossRefGoogle Scholar
  26. 26.
    Khoury MJ, Yang Q (1998) The future of genetic studies of complex human diseases: an epidemiologic perspective. Epidemiology 9:350–354PubMedCrossRefGoogle Scholar
  27. 27.
    Burton PR, Tobin MD, Hopper JL (2005) Key concepts in genetic epidemiology. Lancet 366:941–951PubMedCrossRefGoogle Scholar
  28. 28.
    Esteban A, Fernandez-Segoviano P, Frutos-Vivar F, et al (2004) Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med 141:440–445PubMedGoogle Scholar
  29. 29.
    Gowda MS, Klocke RA (1997) Variability of indices of hypoxemia in adult respiratory distress syndrome. Crit Care Med 25:41–45PubMedCrossRefGoogle Scholar
  30. 30.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  31. 31.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442Google Scholar
  32. 32.
    Wakefield J (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 81:208–227PubMedCrossRefGoogle Scholar
  33. 33.
    Wacholder S, Rothman N, Caporaso N (2000) Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 92: 1151–1158PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Localio R, Rebbeck TR (2004) Evaluating bias due to population stratification in case-control association studies of admixed populations. Genet Epidemiol 27:14–20PubMedCrossRefGoogle Scholar
  35. 35.
    Andrieu N, Goldstein AM (1998) Epidemiologic and genetic approaches in the study of geneenvironment interaction: an overview of available methods. Epidemiol Rev 20:137–147PubMedGoogle Scholar
  36. 36.
    Smyth DJ, Cooper JD, Bailey R, et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMedCrossRefGoogle Scholar
  37. 37.
    Plenge RM, Scielstad M, Padyukov L, et al (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis — A genomewide study. N Engl J Med 357:1199–1209PubMedCrossRefGoogle Scholar
  38. 38.
    Gong MN, Zhou W, Williams PL, et al (2005)-308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 26:382–389PubMedCrossRefGoogle Scholar
  39. 39.
    Gong MN, Zhou W, Williams PL, Thompson BT, Pothier L, Christiani DC (2007) Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 35:48–56PubMedCrossRefGoogle Scholar
  40. 40.
    Gao L, Flores C, Fan-Ma S, et al (2007) Macrophage migration inhibitory factor in acute lung injury: expression, biomarker, and associations. Transi Res 150:18–29CrossRefGoogle Scholar
  41. 41.
    Adamzik M, Frey UH, Rieman K, et al (2007) ACE I/D but not AGT (-6)A/G polymorphism is a risk factor for mortality in ARDS. Eur Respir J 29:482–488PubMedCrossRefGoogle Scholar
  42. 42.
    Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC (2006) Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med 34:1001–1006PubMedCrossRefGoogle Scholar
  43. 43.
    Frerking I, Sengler C, Gunther A, et al (2005) Evaluation of the-26G> A CC16 polymorphism in acute respiratory distress syndrome. Crit Care Med 33:2404–2406PubMedCrossRefGoogle Scholar
  44. 44.
    Gao L, Grant A, Halder I, et al (2006) Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol 34:487–495PubMedCrossRefGoogle Scholar
  45. 45.
    Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC (2007) Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 35:1290–1295PubMedCrossRefGoogle Scholar
  46. 46.
    Zhai R, Gong MN, Zhou W, et al (2007) Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax 62:718–722PubMedCrossRefGoogle Scholar
  47. 47.
    Montgomery HE, Marshall R, Hemingway H, et al (1998) Human gene for physical performance. Nature 393:221–222PubMedCrossRefGoogle Scholar
  48. 48.
    Gong MN, Thompson BT, Williams PL, et al (2006) Interleukin-10 polymorphism in position-1082 and acute respiratory distress syndrome. Eur Respir J 27:674–681PubMedCrossRefGoogle Scholar
  49. 49.
    Gong MN, Wei Z, Xu LL, Miller DP, Thompson BT, Christiani DC (2004) Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest 125:203–211PubMedCrossRefGoogle Scholar
  50. 50.
    Zhai R, Zhou W, Gong MN, et al (2007) Inhibitor kappaB-alpha haplotype GTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians. Crit Care Med 35:893–898PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2008

Authors and Affiliations

  • R. Cartin-Ceba
    • 1
  • M. N. Gong
    • 2
  • O. Gajic
    • 1
  1. 1.Department of Internal Medicine Division of PulmonaryCritical Care Medicine Mayo ClinicRochesterUSA
  2. 2.Department of Pulmonary, Critical CareSleep Medicine Department of Medicine Mount Sinai HospitalNew YorkUSA

Personalised recommendations