Advertisement

Genomic Approaches to Understanding Allelochemical Effects on Plants

  • Stephen O. Duke
  • Scott R. Baerson
  • Zhiqiang Pan
  • Isabelle A. Kagan
  • Adela Sánchez-Moreiras
  • Manuel J. Reigosa
  • Nuria Pedrol
  • Margot Schulz

Abstract

Little is known concerning the mode of action of allelochemicals or plant defense responses mounted against them. Theoretically, changes in the expression of genes encoding the primary target or other proteins in the same pathway should occur soon after phytotoxin exposure. Defense responses, such as the induction of genes involved in chemical detoxification, may occur later, depending on the nature of the chemosensors which presumably exist in plant cells. We first used yeast (Saccharomyces cerevisiae) to test the concept of transcriptome profiling of toxicant modes of action. Characteristic gene induction profiles related to specific molecular target sites were verified with several fungicides. A battery of xenobiotic defense-associated genes were found to be dramatically induced in Arabidopsis following exposure to an array of structurally unrelated xenobiotics, including a herbicide, an allelochemical, and herbicide safeners. These genes are unlikely to be strongly linked to the mode of action of a specific phytotoxin, but rather constitute a coordinately-controlled xenobiotic defense gene network. Transcriptional profiling experiments using microarrays are being conducted to examine the effects of various herbicides and natural phytotoxins on the Arabidopsis transcriptome.

Keywords

Transcriptome Profile Genomic Approach Methionine Synthesis Allelopathic Rice Arabidopsis Transcriptome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A.K., Baerson, S.R., Rogers, P.D., Jacob, M.R., Barker, K.S., Cleary, J.D., Walker, L.A., Nagle, D.G. and Clark, A.M. (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cervisiae. J. Biol. Chem. 278, 34998–35015.PubMedCrossRefGoogle Scholar
  2. Baerson, S.R., Sánchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I.A., Agarwal, A.K., Reigosa, M.J. and Duke, S.O. (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical bzoxazolin-2(3H)-one (BOA). J. Biol. Chem. 280, 21867–21881.PubMedCrossRefGoogle Scholar
  3. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. and Vivanco, J.M. (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interacttions. Science 301, 1377–1380.PubMedCrossRefGoogle Scholar
  4. Bassham, D.C. and Raikhel, N.V. (2000) Plant cells are not just green yeast. Plant Physiol. 122, 999–1001.PubMedCrossRefGoogle Scholar
  5. Boshoff, H.I.M., Myers, T.G., Copp, B.R., McNeil, M.R., Wilson, B.A. and Barry, C.E. III (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: Novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184.PubMedCrossRefGoogle Scholar
  6. Duke, S.O., Dayan, F.E., Kagan, I.A. and Baerson, S.R. (2005a) New herbicide target sites from natural compounds. Am. Chem. Soc. Symp. Ser. 892, 132–141.Google Scholar
  7. Duke, S.O., Baerson, S.R., Pan, Z., Kagan, IA., Sánchez-Moreiras, A., Reigosa, M.J., Pedrol-Bonjoch, N. and Schulz, M. (2005b) Genomic approaches to understanding allelochemical modes of action and defenses against allelochemicals. Proceedings of the Fourth World Congress on Allelopathy, International Allelopathy Society, Wagga Wagga, Australia, pp. 107–113.Google Scholar
  8. Eckes, P., van Almsick, C. and Weidler, M. (2004) Gene expression profiling, arevolutionary tool in Bayer CropScience herbicide discovery. Pflanzenschutz-Nachrichten Bayer 57, 62–77.Google Scholar
  9. Glombitza, S., Dubuis, P.-H., Thulke, O., Welzl, G., Bovet, L., Goetz, M., Affenzeller, M., Geist, B., Hehn, A., Asnaghi, C., Ernst, D., Seidlitz, H., Gundlach, H., Mayer, K.F., Martinoia, E., Werck-Reichhart, D., Mauch, F. and Schaeffner, A.R. (2004) Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Mol. Biol. 54, 817–835.PubMedCrossRefGoogle Scholar
  10. Gutteridge, S., Pember, S.O., Wu, L., Tao, Y. and Walker, M. (2005) Fungal site of action determination: Integration with high-volume screening and lead progresssion. Am. Chem. Soc. Symp. Ser. 892, 132–141.Google Scholar
  11. Kagan, I.A., Michel, A., Prause, A., Scheffler, B.E., Pace, P. and Duke, S.O. (2005) Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pestic. Biochem. Physiol. 82, 133–153.CrossRefGoogle Scholar
  12. Kato-Noguchi, H. and Ino, T. (2005) Concentration and release of momilactone B in the seedlings of eight rice cultivar. J. Plant Physiol. 161, 965–969.Google Scholar
  13. Kato-Noguchi, H. and Macias, F. (2006) Possible mechanism of 6-methoxy-benzoxazolin-2(3H)-one on germination of cress (Lepidium sativum L.). J. Chem. Ecol. 32, 1101–1109.PubMedCrossRefGoogle Scholar
  14. Kong, C., Xu, X., Zhou, B., Hu, F., Zhang, C. and Zhang, M. (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65, 1123–1128.PubMedCrossRefGoogle Scholar
  15. Lechelt-Kunze, C., Meissner, R.C., Drewes, M. and Tietjen, K. (2003) Flufenacet herbicide treatment phenocopies the fiddlehead mutant in Arabidopsis thaliana. Pest Manag. Sci. 59, 847–856.PubMedCrossRefGoogle Scholar
  16. Manfield, I.W., Orfila, C., McCartney, L., Harholt, J., Bernal, A.J., Scheller, H.V., Gilmartin, P.M., Mikkelson, J.D., Knox, J.P. and Willats, W.G.T. (2004) Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: Global transcript profiling and cellular analysis. Plant J. 40, 260–275.PubMedCrossRefGoogle Scholar
  17. Matvienko, M., Torres, M.J. and Yoder, J.I. (2001) Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals. Plant Physiol. 127, 272–282.PubMedCrossRefGoogle Scholar
  18. Matvienko, M., Wojtowicz, A., Wrobel, R., Jamison, D., Goldwasser, Y. and Yoder, J.I. (2004) Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones. Plant J. 25, 375–387.CrossRefGoogle Scholar
  19. Raghavan, C., Ong, E.K., Dalling, M.J. and Stevenson, T.W. (2005a) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genomics 5, 4–17.Google Scholar
  20. Raghavan, C., Ong, E.K., Dalling, M.J. and Stevenson, T.W. (2005b) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genomics 6, 60–70.Google Scholar
  21. Rishi, A.S., Munir, S., Kapur, V., Nelson, N.D. and Goyal, A. (2004) Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray. Planta 220, 296–306.PubMedCrossRefGoogle Scholar
  22. Scheible, W.-R., Fry, B., Kochevenko, A., Schindelasch, D., Zimmerli, L., Somerville, S., Loria, R. and Somerville, C.R. (2003) An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15, 1781–1794.PubMedCrossRefGoogle Scholar
  23. Uppalapati, S.R., Ayoubi, P., Weng, H., Palmer, D.A., Mitchell, R.E., Jones, W., and Bender, C.L. (2005) The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone. Plant J. 42, 201–217.PubMedCrossRefGoogle Scholar
  24. Xu, M., Hillwig, M.L., Prisic, S., Coates, R.M. and Peters, R.J. (2004) Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J. 39, 309.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Stephen O. Duke
    • 1
  • Scott R. Baerson
    • 1
  • Zhiqiang Pan
    • 1
  • Isabelle A. Kagan
    • 2
  • Adela Sánchez-Moreiras
    • 3
  • Manuel J. Reigosa
    • 4
  • Nuria Pedrol
    • 5
  • Margot Schulz
    • 6
  1. 1.Natural Products Utilization Research, USDA, ARSUSA
  2. 2.ARS, FAPRU, USDAUSA
  3. 3.Department of BiochemistryMax-Planck Institute for Chemical EcologyGermany
  4. 4.Laboratorio EcofisioloxiaUniversidade de VigoVexetalSpain
  5. 5.Laboratorio EcofisioloxiaUniversidade de VigoVexetalSpain
  6. 6.Institut fur MolekulareUniversität BonnGermany

Personalised recommendations